Cho hệ bất phương trình \(\left\{ \begin{array}{l}3x + 2y \ge 9\\x - 2y \le 3\\x + y \le 6\\x \ge 1\end{array} \right.\) (I). Khi đó:
a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) (3; 2) là một nghiệm của hệ bất phương trình.
c) Miền nghiệm của hệ bất phương trình là miền tam giác.
d) \(x = 1;y = 3\) là nghiệm của hệ bất phương trình (I) sao cho \(F = 3x - y\) đạt giá trị lớn nhất.
Cho hệ bất phương trình \(\left\{ \begin{array}{l}3x + 2y \ge 9\\x - 2y \le 3\\x + y \le 6\\x \ge 1\end{array} \right.\) (I). Khi đó:
a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) (3; 2) là một nghiệm của hệ bất phương trình.
c) Miền nghiệm của hệ bất phương trình là miền tam giác.
d) \(x = 1;y = 3\) là nghiệm của hệ bất phương trình (I) sao cho \(F = 3x - y\) đạt giá trị lớn nhất.
Quảng cáo
Trả lời:
a) Đ, b) Đ, c) S, d) S.
a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Thay \(x = 3;y = 2\) vào vế trái của các bất phương trình của hệ ta thấy đều thỏa mãn. Do đó, (3; 2) là một nghiệm của hệ bất phương trình.
c) Miền nghiệm của hệ là tứ giác ABCD (phần tô mầu) như hình vẽ.

d) Ta có \(A\left( {1;3} \right),B\left( {1;5} \right),C\left( {5;1} \right),D\left( {3;0} \right)\).
Ta có \(F\left( {1;3} \right) = 3.1 - 3 = 0\); \(F\left( {1;5} \right) = 3.1 - 5 = - 2\); \(F\left( {5;1} \right) = 3.5 - 1 = 14\); \(F\left( {3;0} \right) = 3.3 - 0 = 9\).
Vậy giá trị lớn nhất của \(F = 3x - y\) là 14 khi \(x = 5;y = 1\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 3.
Áp dụng định lí côsin cho tam giác ABC, ta có: \(\cos A = \frac{{A{B^2} + A{C^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{4^2} + {5^2} - {6^2}}}{{2.4.5}} = \frac{1}{8}\).
Mà \(\widehat {\rm{A}} < 180^\circ \) nên \(\sin A = \sqrt {1 - {{\cos }^2}A} = \sqrt {1 - \frac{1}{{64}}} = \frac{{3\sqrt 7 }}{8}\).
Áp dụng định lí sin, ta có \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{6}{{2.\frac{{3\sqrt 7 }}{8}}} \approx 3\)(cm).
Câu 2
A. \[\left\{ \begin{array}{l}y \ge 0\\3x + 2y < - 6\end{array} \right.\].
B. \[\left\{ \begin{array}{l}x > 0\\3x + 2y < 6\end{array} \right.\].
Lời giải
Đáp án đúng là: C
Dựa vào hình vẽ ta thấy đồ thị gồm hai đường thẳng \(y = 0\) và đường thẳng \(3x + 2y = 6\).
Miền nghiệm gồm phần y nhận giá trị không âm.
Lại có \(O\left( {0;0} \right)\) thỏa mãn bất phương trình \(3x + 2y < 6\).
Vậy miền không gạch biểu diễn miền nghiệm của hệ bất phương trình \[\left\{ \begin{array}{l}y \ge 0\\3x + 2y \le 6\end{array} \right.\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





