Câu hỏi:

03/11/2025 80 Lưu

Cho ba lực \(\overrightarrow {{F_1}}  = \overrightarrow {MB} ,\overrightarrow {{F_2}}  = \overrightarrow {MA} ,\overrightarrow {{F_3}}  = \overrightarrow {MC} \) cùng tác động vào một vật tại điểm M và vật đứng yên. Biết cường độ của \(\overrightarrow {{F_1}} \) và \(\overrightarrow {{F_2}} \) lần lượt là 28 N và 45 N. Tìm cường độ của lực \(\overrightarrow {{F_3}} \) biết \(\widehat {AMB} = 90^\circ \).
Tìm cường độ của lực vec F_3 biết góc AMB = 90 độ. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 53

Do vật đứng yên nên ta có \(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  + \overrightarrow {{F_3}}  = \overrightarrow 0  \Rightarrow \overrightarrow {{F_3}}  =  - \left( {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right)\).

Tìm cường độ của lực vec F_3 biết góc AMB = 90 độ. (ảnh 2)

Dựng hình chữ nhật \(AMBD\). Theo quy tắc hình bình hành ta có \(\overrightarrow {MD}  = \overrightarrow {MA}  + \overrightarrow {MB}  = \overrightarrow {{F_1}}  + \overrightarrow {{F_2}} \).

Suy ra \(\overrightarrow {{F_3}}  =  - \overrightarrow {MD} \) nên \({F_3} = MD = \sqrt {M{A^2} + M{B^2}}  = \sqrt {{{28}^2} + {{45}^2}}  = 53\)(N).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 2

Cho tứ giác ABCD. Gọi I,J lần lượt là trung điểm của AC và BD. Biết vec AB + vec CD  = k vec IJ. Giá trị của k bằng bao nhiêu? (ảnh 1)

Ta có \(\left\{ \begin{array}{l}\overrightarrow {IJ}  = \overrightarrow {IA}  + \overrightarrow {AB}  + \overrightarrow {BJ} \\\overrightarrow {IJ}  = \overrightarrow {IC}  + \overrightarrow {CD}  + \overrightarrow {DJ} \end{array} \right.\).

Cộng theo vế ta được

\(2\overrightarrow {IJ}  = \left( {\overrightarrow {IA}  + \overrightarrow {IC} } \right) + \left( {\overrightarrow {AB}  + \overrightarrow {CD} } \right) + \left( {\overrightarrow {BJ}  + \overrightarrow {DJ} } \right)\)\( \Leftrightarrow 2\overrightarrow {IJ}  = \overrightarrow {AB}  + \overrightarrow {CD} \).

Suy ra \(k = 2\).

Câu 2

A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\).

B. \(\left| {\overrightarrow {OA} } \right| = a\).   
C. \(\left| {\overrightarrow {OA} } \right| = \left| {\overrightarrow {OB} } \right|\).  
D. \(\left| {\overrightarrow {OA} } \right| = \frac{{a\sqrt 2 }}{2}\).

Lời giải

Đáp án đúng là: A

Cho hình thoi tâm O, cạnh bằng a và góc A = 60 độ. Kết luận nào sau đây là đúng? (ảnh 1)

Vì \(\widehat A = 60^\circ  \Rightarrow \Delta ABC\) đều \( \Rightarrow AO = \frac{{a\sqrt 3 }}{2} \Rightarrow \left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\)

Câu 3

A. \[\frac{a}{{\sin A}} = 2R\,.\] 

B. \[\sin A = \frac{a}{{2R}}\,.\]
C. \[b\sin B = 2R\,.\]  
D. \[\sin C = \frac{{c\sin A}}{a}\,.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP