Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ.

Khẳng định nào sau đây sai?
Quảng cáo
Trả lời:
Dựa vào đồ thị ta có \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = 1\end{array} \right.\).
Ta có bảng biến thiên của hàm số \(y = f\left( x \right)\):

Vậy hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - 2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\).
Vậy phương án C sai. Chọn C.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
 - 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
 - Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
 - Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
 
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Nếu \[y\] là hàm số biểu thị cho chuyển động của hạt thì \[y'\] là hàm vận tốc \(v\).
b) Đúng. Ta có \[y = {t^3} - 12t + 3 \Rightarrow v = y' = 3{t^2} - 12\].
c) Sai. Dựa vào hàm vận tốc \[v\left( t \right) = 3{t^2} - 12\] thì hạt đi lên khi \(v > 0\) và xuống khi \(v < 0\).
Do đó, vật đi lên khi \(t \in \left( {2; + \infty } \right)\) và đi xuống khi \(t \in \left( {0;2} \right)\).
Vậy tại thời điểm \[t = 1\] thì hạt đang chuyển động đi xuống.
d) Đúng. Từ \[t = 0\] tới \[t = 2\], vật chuyển động từ tọa độ \[y = 3\] đến tọa độ \[y = - 13\], tức là vật đi được quãng đường \[16\] đơn vị độ dài, tương ứng 16 m.
Từ \[t = 2\] tới \[t = 3\], vật chuyển động từ tọa độ \[y = - 13\] đến tọa độ \[y = - 6\], tức là vật đi được quãng đường \[7\] đơn vị độ dài, tương ứng 7 m.
Kết luận quãng đường vật di chuyển trong khoảng thời gian \[0 \le t \le 3\] là \[23\] m.
Câu 2
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



