Đề ôn luyện Toán Chương 1. Ứng dụng đạo hàm để khảo sát hàm số (đề số 2)
4.6 0 lượt thi 22 câu hỏi
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Toán 12 Kết nối tri thức Bài 1: Tính đơn điệu và cực trị của hàm số có đáp án
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. Hàm số đồng biến trên khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
B. Hàm số nghịch biến trên \(\mathbb{R}\).
C. Hàm số nghịch biến trên khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
D. Hàm số đồng biến trên \(\mathbb{R}\).
Lời giải
Đồ thị hàm số \(y\, = \,f\left( x \right)\) đi xuống từ trái qua phải và nhận đường thẳng \(x\, = \,1\) làm tiệm cận đứng.
Do đó, hàm số \(y\, = \,f\left( x \right)\) nghịch biến trên khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\). Chọn C.
Câu 2
A. \(x = 7\).
B. \(x = - 2\).
C. \(x = 0\).
D. \(x = 6\).
Lời giải
Quan sát bảng biến thiên, ta thấy điểm cực đại của hàm số \(y = f\left( x \right)\) là \(x = 6\). Chọn D.
Câu 3
Lời giải
Dựa vào đồ thị ta có \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = 1\end{array} \right.\).
Ta có bảng biến thiên của hàm số \(y = f\left( x \right)\):

Vậy hàm số \(y = f\left( x \right)\) đồng biến trên khoảng \(\left( { - 2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right)\).
Vậy phương án C sai. Chọn C.
Câu 4
Lời giải
Ta có \[y' = - 3{x^2} + 6x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\].
Hàm số đồng biến khi \(y' > 0\)\( \Leftrightarrow 0 < x < 2\). Chọn D.
Câu 5
A. \[x = 1\].
B. \[x = - 2\].
C. \[M\left( {1\,;\, - 2} \right)\].
D. \[M\left( { - 2\,;\, - 4} \right)\].
Lời giải
Dựa vào đồ thị hàm số ta thấy điểm cực tiểu của đồ thị hàm số \(y = f\left( x \right)\) là \[M\left( {1\,;\, - 2} \right)\]. Chọn C.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. \[y = - {x^3} + 3{x^2} - 4.\]
B. \[y = {x^3} - 4.\]
C. \[y = {x^2} - 4.\]
D. \[y = - {x^2} - 4.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



![Cho hàm số y = f(x) xác định và liên tục trên đoạn [ -2; 2] và có đồ thị là đường cong trong hình vẽ sau (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/blobid0-1762223692.png)






