CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 2,18

Giả sử gốc tọa độ tại điểm F.

Hàm số của đồ thị biểu diễn đường đi của viên bi có dạng \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\).

Theo hình vẽ ta có đồ thị có đỉnh là \(C\left( {1;7} \right)\) và đi qua điểm \(A\left( {0;2} \right)\) nên ta có:

\(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 1\\a + b + c = 7\\c = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2a + b = 0\\a + b + c = 7\\c = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a =  - 5\\b = 10\\c = 2\end{array} \right.\).

Do đó, đồ thị hàm số biểu diễn đường đi của viên bi là \(y =  - 5{x^2} + 10x + 2\).

Điểm E là giao điểm của đồ thị với trục hoành nên hoành độ của điểm E là nghiệm của phương trình \( - 5{x^2} + 10x + 2 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5 + \sqrt {35} }}{5}\\x = \frac{{5 - \sqrt {35} }}{5}\end{array} \right.\).

Mà \({x_E} > 0\) nên \({x_E} = \frac{{5 + \sqrt {35} }}{5} \approx 2,18\).

Vậy khoảng cách từ vị trí E đến vị trí F khoảng 2,18 mét.

Lời giải

Trả lời: 60

Gọi \(x,y\left( {x \ge 0,y \ge 0,x,y \in \mathbb{N}} \right)\)lần lượt là số áo dài tay và ngắn tay mà cửa hàng nên mua để kinh doanh có lãi nhất.

Theo yêu cầu bài toán, ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 100\\8x + 6y \le 720\end{array} \right.\) (*)

Ta cần tìm \(x,y\) để biểu thức \(F = 150000x + 120000y\) đạt giá trị lớn nhất trên miền nghiệm của (*)

Để kinh doanh có lãi nhiều nhất thì cửa hàng cần nhập bao nhiêu áo dài tay. (ảnh 1)

Miền nghiệm là tứ giác OABC (phần tô màu)

Các điểm có tọa độ như sau: \(O\left( {0;0} \right),A\left( {0;100} \right),B\left( {60;40} \right),C\left( {90;0} \right)\).

Tại  \(O\left( {0;0} \right)\) thì \(F = 0\).

Tại \(A\left( {0;100} \right)\) thì \(F = 150000.0 + 120000.100 = 12000000\);

Tại \(B\left( {60;40} \right)\) thì \(F = 150000.60 + 120000.40 = 13800000\);

Tại \(C\left( {90;0} \right)\) thì \(F = 150000.90 + 120000.0 = 13500000\).

Vậy cửa hàng nên nhập 60 áo dài tay và 40 áo ngắn tay để kinh doanh thì có lãi nhất.

Câu 3

A. \(\frac{{\sqrt 3 }}{3}\). 

B. \(\frac{{\sqrt 3 }}{2}\). 
C. \(\sqrt 3 \).   
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hàm số đồng biến trên khoảng \(\left( { - \infty ;3} \right)\).

B. \(\left( P \right)\) có đỉnh là \(I\left( {3;4} \right)\).

C. \(\left( P \right)\) cắt trục tung tại điểm có tung độ bằng 4.

D. \(\left( P \right)\) cắt trục hoành tại hai điểm phân biệt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Buồn ngủ quá!      

B. Hình thoi có hai đường chéo vuông góc với nhau. 

C. 8 là số chính phương.  

D. Hà Nội là thủ đô của Việt Nam

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\left( {{x_0};{y_0}} \right) = \left( {2;8} \right)\).  

B. \(\left( {{x_0};{y_0}} \right) = \left( { - 10; - 3} \right)\).    

C. \(\left( {{x_0};{y_0}} \right) = \left( {3;3} \right)\).   
D. \(\left( {{x_0};{y_0}} \right) = \left( {0;2} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP