Một viên bi được ném xiên từ vị trí A cách mặt đất 2 m theo quỹ đạo dạng parabol như hình vẽ sau đây. Tìm khoảng cách từ vị trí E đến vị trí F, biết rằng vị trí E là nơi viên bi rơi xuống chạm mặt đất (kết quả làm tròn đến hàng phần trăm).

Quảng cáo
Trả lời:
Trả lời: 2,18
Giả sử gốc tọa độ tại điểm F.
Hàm số của đồ thị biểu diễn đường đi của viên bi có dạng \(y = a{x^2} + bx + c\left( {a \ne 0} \right)\).
Theo hình vẽ ta có đồ thị có đỉnh là \(C\left( {1;7} \right)\) và đi qua điểm \(A\left( {0;2} \right)\) nên ta có:
\(\left\{ \begin{array}{l} - \frac{b}{{2a}} = 1\\a + b + c = 7\\c = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2a + b = 0\\a + b + c = 7\\c = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a = - 5\\b = 10\\c = 2\end{array} \right.\).
Do đó, đồ thị hàm số biểu diễn đường đi của viên bi là \(y = - 5{x^2} + 10x + 2\).
Điểm E là giao điểm của đồ thị với trục hoành nên hoành độ của điểm E là nghiệm của phương trình \( - 5{x^2} + 10x + 2 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5 + \sqrt {35} }}{5}\\x = \frac{{5 - \sqrt {35} }}{5}\end{array} \right.\).
Mà \({x_E} > 0\) nên \({x_E} = \frac{{5 + \sqrt {35} }}{5} \approx 2,18\).
Vậy khoảng cách từ vị trí E đến vị trí F khoảng 2,18 mét.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \(\emptyset \).
Lời giải
Đáp án đúng là: D
Tập \(\left\{ {0;1;2} \right\}\) không phải là tập con của tập hợp \(X\).
Lời giải
a) Đ, b) S, c) Đ, d) Đ
Dựa vào đồ thị hàm số ta thấy:
+) Trên khoảng \(\left( { - \infty ;0} \right)\) hàm số đồng biến.
+) Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ trái dấu nhau.
+) Đồ thị hàm số cắt trục tung tại điểm nằm phía trên trục hoành nên \(c > 0\).
+) Bề lõm của parabol quay xuống dưới nên \(a < 0\) và hoành độ của đỉnh parabol \( - \frac{b}{{2a}} > 0\) mà \(a < 0\) nên \(b > 0\).
Câu 3
A. \(y = - {x^2} + 4x - 3\) .
B. \(y = {x^2} - 4x + 7\).
C. \(y = 2{x^2} - 12x + 20\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(S = \frac{1}{2}bc\sin A\,.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Hàm số đồng biến trên khoảng \(\left( { - \infty ;3} \right)\).
B. \(\left( P \right)\) có đỉnh là \(I\left( {3;4} \right)\).
C. \(\left( P \right)\) cắt trục tung tại điểm có tung độ bằng 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

