Miền nghiệm của bất phương trình \[x - 2 + 2\left( {y - 1} \right) > 2x + 4\] chứa điểm nào sau đây?
A. \(A\left( {1\,\,;\,\,1} \right).\)
Quảng cáo
Trả lời:
Đáp án đúng là: B
Ta có \[x - 2 + 2\left( {y - 1} \right) > 2x + 4\]\[ \Leftrightarrow x - 2 + 2y - 2 > 2x + 4\]\[ \Leftrightarrow x - 2y + 8 < 0\].
Thay tọa độ các điểm vào bất phương trình ta thấy tọa độ điểm B thỏa mãn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) Đ, c) Đ, d) S
a) Gọi \(x,y,\left( {x,y \ge 0} \right)\) (hecta) lần lượt là diện tích đất dùng để trồng mít và xoài.
Do bác An dự định trồng hai loại cây ăn trái là mít và xoài trong nông trại rộng 100 hecta nên \(x + y \le 100\).
b) Vì mỗi hecta trồng mít cần 20 công chăm sóc và mỗi hecta trồng xoài cần 40 công chăm sóc mà công cần dùng không được vượt quá 2 800 công nên ta có \(20x + 40y \le 2800\) hay \(x + 2y \le 140\).
c) Tổng lợi nhuận thu được là \(E = 150x + 180y\)(triệu đồng).
d) Bài toán trở thành tìm giá trị lớn nhất của \(E = 150x + 180y\) trên miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 100\\x + 2y \le 140\end{array} \right.\).
Ta có miền nghiệm của hệ bất phương trình là miền tứ giác OABC (phần tô màu).
Ta có \(O\left( {0;0} \right),A\left( {0;70} \right),B\left( {60;40} \right),C\left( {100;0} \right)\).
Ta có \(E\left( {0;0} \right) = 150.0 + 180.0 = 0\); \(E\left( {0;70} \right) = 150.0 + 180.70 = 12600\);
\(E\left( {60;40} \right) = 150.60 + 180.40 = 16200\); \(E\left( {100;0} \right) = 150.100 + 180.0 = 15000\).
Vậy lợi nhuận thu được lớn nhất là 16,2 tỷ đồng.
Lời giải
Trả lời: 30,5
Gọi \(x\) triệu đồng là số tiền mà doanh nghiệp A dự định giảm giá \(\left( {0 \le x \le 4} \right)\).
Khi đó lợi nhuận thu được khi bán một chiếc xe là \(31 - x - 27 = 4 - x\).
Số xe mà doanh nghiệp sẽ bán được trong một năm là \(600 + 200x\).
Lợi nhuận mà doanh nghiệp thu được trong một năm là
\(f\left( x \right) = \left( {4 - x} \right)\left( {600 + 200x} \right) = - 200{x^2} + 200x + 2400\).
Bài toán trở thành tìm \(x\) \(\left( {0 \le x \le 4} \right)\) để \(f\left( x \right)\) đạt giá trị lớn nhất.
Ta có \(f\left( x \right) = - 200\left( {{x^2} - x + \frac{1}{4}} \right) + 2450 = - 200{\left( {x - \frac{1}{2}} \right)^2} + 2450 \le 2450\).
Dấu “=” xảy ra khi \(x = \frac{1}{2}\) (thỏa mãn).
Vậy doanh nghiệp bán giá mới chiếc xe 30,5 triệu đồng thì thu được lợi nhuận lớn nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\(75^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(N\left( { - 1\,;1} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.