Câu hỏi:

04/11/2025 213 Lưu

(1,0 điểm) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang (hai đáy \(AB > CD\)). Gọi \(M,N\) lần lượt là trung điểm của \(SA,SB\).

a) Tìm giao điểm \(P\) của \(SC\) và mp\(\left( {ADN} \right)\).

b) Biết \(AN\) cắt \(DP\) tại \(I\). Chứng minh \(SI\,{\rm{//}}\,AB\). Tứ giác \(SABI\) là hình gì?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình chóp \(S.ABCD\) có đá (ảnh 1)

a) Ta có \(N\) là điểm chung thứ nhất; \(E = BC \cap AD \Rightarrow E\) là điểm chung thứ 2

\( \Rightarrow \left( {SBC} \right) \cap \left( {ADN} \right) = NE\).

Gọi \(P = SC \cap NE\). Khi đó \(P = SC \cap \left( {ADN} \right)\).

b) Ta có : \(\left\{ {\begin{array}{*{20}{l}}{SI = \left( {SAB} \right) \cap \left( {SCD} \right)}\\{AB \subset \left( {SAB} \right)}\\{CD \subset \left( {SCD} \right)}\\{AB\,{\rm{//}}\,CD}\end{array}} \right.\)

\( \Rightarrow SI\,{\rm{//}}\,AB\,{\rm{//}}\,CD\).

\(MN\,{\rm{//}}\,AB\) (do \(MN\) là đường trung bình của \(\Delta SAB\))

\( \Rightarrow MN\,{\rm{//}}\,SI\), lại có \(M\) là trung điểm của \(SA\)

\( \Rightarrow N\) là trung điểm của \(AI\)

Tứ giác \(SABI\)\(N\) là trung điểm của \(SB,AI\) nên \(SABI\) là hình bình hành.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[2x - y \le 2\];                                                     
B. \[2x - 3y \le 0\];
C. \[2x + y < 2\];                                                      
D. \[2x - y > 2\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Gọi phương trình đường thẳng \[d\] có dạng: \[y = ax + b\].

Đường thẳng \[d\] đi qua điểm \[\left( {1;\,0} \right)\]\[\left( {0;\, - 2} \right)\] nên ta có hệ phương trình:

\[\left\{ \begin{array}{l}a + b = 0\\0a + b = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 2\end{array} \right.\]

Vậy \[d\]: \[y = 2x - 2\]hay \[2x--y = 2\]

Lấy điểm \[\left( {0;\,1} \right)\] thuộc miền nghiệm của bất phương trình cần tìm, thay tọa độ điểm \[\left( {0;\,1} \right)\] vào biểu thức \[2x--y = 2\] ta được: \[2.0--1 = - 1 < 2\].

Vậy miền nghiệm được biểu diễn bởi nửa mặt phẳng không bị gạch (kể cả đường thẳng \[d\]) là miền nghiệm của bất phương trình\[2x--y \le 2\].

Câu 2

A. \(\left\{ {12;\,3} \right\}\);                           
B. \(\emptyset \);                                  
C. \(\left\{ {1;\,2} \right\}\);                       
D. \(\left\{ {1;\,2;\,3} \right\}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Các tập con của tập \(A\) là: \(\left\{ 1 \right\},\,\left\{ 2 \right\},\,\left\{ 3 \right\},\,\,\left\{ {1;\,\,2} \right\},\,\left\{ {1;\,\,3} \right\},\,\,\left\{ {2;\,\,3} \right\},\,\,\left\{ {1;\,\,2;\,\,3} \right\},\,\,\emptyset \).

Vậy tập không là con của tập \(A\) là: \(\left\{ {12;\,3} \right\}\).

Câu 3

A. \[\frac{a}{{\sqrt 3 }}\];                               
B. \[\frac{{3a}}{{\sqrt 3 }}\];                             
C. \[\frac{{5a}}{{\sqrt 3 }}\];                              
D. \[\frac{{7a}}{{\sqrt 3 }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. 4;                                   
B. 6;                              
C. 8;                                       
D. 10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[1\];                            
B. \[ - 2\]\[;\]                              
C. \[0\]\[;\]                            
D. \[2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\tan \left( {180^\circ - \alpha } \right) = - \tan \alpha \left( {\alpha \ne 90^\circ } \right)\);             
B. \({\rm{cos}}\left( {180^\circ - \alpha } \right) = {\rm{cos}}\alpha \);
C. \(\cot \left( {180^\circ - \alpha } \right) = - \cot \alpha \left( {0^\circ < \alpha < 180^\circ } \right)\).                        
D. \(\sin \left( {180^\circ - \alpha } \right) = \sin \alpha \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP