Câu hỏi:

04/11/2025 8 Lưu

(1,0 điểm) Cho phương trình \(\left( {2\sin x - 1} \right)\left( {3\cos 2x + 2\sin x - m} \right) = 3 - 4{\cos ^2}x\). Tìm tất cả các giá trị của tham số \(m\) để phương trình có đúng ba nghiệm phân biệt trên đoạn \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(\left( {2{\rm{sin}}x - 1} \right)\left( {3{\rm{cos}}2x + 2{\rm{sin}}x - m} \right) = 3 - 4{\rm{co}}{{\rm{s}}^2}x\)

\( \Leftrightarrow \left( {2{\rm{sin}}x - 1} \right)\left( {3{\rm{cos}}2x + 2{\rm{sin}}x - m} \right) = 4{\rm{si}}{{\rm{n}}^2}x - 1\)

\( \Leftrightarrow \left( {2{\rm{sin}}x - 1} \right)\left( {3{\rm{cos}}2x + 2{\rm{sin}}x - m} \right) = \left( {2{\rm{sin}}x - 1} \right)\left( {2{\rm{sin}}x + 1} \right)\)

\( \Leftrightarrow \left( {2{\rm{sin}}x - 1} \right)\left( {3{\rm{cos}}2x - m - 1} \right) = 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{\rm{sin}}x = \frac{1}{2}}\\{{\rm{cos}}2x = \frac{{m + 1}}{2}}\end{array}} \right.\)

Xét \({\rm{sin}}x = \frac{1}{2} \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x = \frac{{5\pi }}{6} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\), vì \(x \in \left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\) nên phương trình đã cho có một nghiệm là \(x = \frac{\pi }{6}\).

Do đó để thoả mãn yêu cầu bài toán thì phương trình \({\rm{cos}}2x = \frac{{m + 1}}{2}\) phải có đúng hai nghiệm phân biệt khác \(\frac{\pi }{6}\) trên \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\).

Xét hàm số \(y = {\rm{cos}}2x\) có bảng biến thiên trên \(\left[ { - \frac{\pi }{4};\frac{\pi }{4}} \right]\) như sau:

Cho phương trình \(\left( {2\sin x - 1} \right)\left( {3\cos 2x + 2\sin x - m} \right) = 3 - 4{\cos ^2}x\). Tìm tất cả các giá trị của tham số \(m\) để phương trình có đúng ba nghiệm phân biệt trên đoạn \(\le (ảnh 1)

Từ BBT suy ra yêu cầu bài toán được thỏa mãn khi và chỉ khi  \(\left\{ {\begin{array}{*{20}{c}}{0 \le \frac{{m + 1}}{2} < 1}\\{\frac{{m + 1}}{2} \ne \frac{1}{2}}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{ - 1 \le m < 1}\\{m \ne 0}\end{array}} \right.\).

Vậy \(m \in \left[ { - 1;1} \right)\backslash \left\{ 0 \right\}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

(1,0 điểm) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang (hai đáy \(AB > CD\)). Gọi \(M,N\) lần lượt là trung điểm của \(SA,SB\).

a) Tìm giao điểm \(P\) của \(SC\) và mp\(\left( {ADN} \right)\).

b) Biết \(AN\) cắt \(DP\) tại \(I\). Chứng minh \(SI\,{\rm{//}}\,AB\). Tứ giác \(SABI\) là hình gì?

Lời giải

Cho hình chóp \(S.ABCD\) có đá (ảnh 1)

a) Ta có \(N\) là điểm chung thứ nhất; \(E = BC \cap AD \Rightarrow E\) là điểm chung thứ 2

\( \Rightarrow \left( {SBC} \right) \cap \left( {ADN} \right) = NE\).

Gọi \(P = SC \cap NE\). Khi đó \(P = SC \cap \left( {ADN} \right)\).

b) Ta có : \(\left\{ {\begin{array}{*{20}{l}}{SI = \left( {SAB} \right) \cap \left( {SCD} \right)}\\{AB \subset \left( {SAB} \right)}\\{CD \subset \left( {SCD} \right)}\\{AB\,{\rm{//}}\,CD}\end{array}} \right.\)

\( \Rightarrow SI\,{\rm{//}}\,AB\,{\rm{//}}\,CD\).

\(MN\,{\rm{//}}\,AB\) (do \(MN\) là đường trung bình của \(\Delta SAB\))

\( \Rightarrow MN\,{\rm{//}}\,SI\), lại có \(M\) là trung điểm của \(SA\)

\( \Rightarrow N\) là trung điểm của \(AI\)

Tứ giác \(SABI\)\(N\) là trung điểm của \(SB,AI\) nên \(SABI\) là hình bình hành.

Câu 2

A. \(\left( {0;\pi } \right)\);                     
B. \(\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right)\);   
C. \(\left( { - 3\pi ; - 2\pi } \right)\);           
D. \(\left( {\frac{{3\pi }}{2};\frac{{5\pi }}{2}} \right)\).

Lời giải

Đáp án đúng là: C

Từ đồ thị nhận thấy hàm số \[y = \cos x\] đồng biến trên \(\left( { - 3\pi ; - 2\pi } \right)\).

Câu 3

PHẦN II. TỰ LUẬN (3,0 điểm)

 (1,0 điểm) Giải các phương trình lượng giác:

a) \(\sin \left( {2x + \frac{\pi }{4}} \right) + \cos x = 0\);                           b) \(\frac{3}{{{{\cos }^2}x}} - 2\sqrt 3 \tan x - 6 = 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AD,BC\), điểm \(G\) là trọng tâm của tam giác \(BCD\). Giao điểm của đường thẳng \(MG\) với mặt phẳng \(\left( {ABC} \right)\)       

A. giao điểm của \(MG\)\(BC\);       
B. giao điểm của \(MG\)\(AC\);        
C. giao điểm của \(MG\)\(AN\);       
D. giao điểm của \(MG\)\(AB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({5^{\rm{o}}}\);                                
B. \({15^{\rm{o}}}\);           
C. \({172^{\rm{o}}}\);         
D. \({225^{\rm{o}}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(m \in \left( { - \infty ; - 1} \right) \cup \left( {1; + \infty } \right)\);                                             
B. \(m \in \left( { - \infty ; - 1} \right] \cup \left[ {1; + \infty } \right)\);        
C. \(m \in \left[ { - 1;1} \right]\);            
D. \(m \in \left( { - 1;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x = k2\pi ,k \in \mathbb{Z}\);       
B. \(x = k\pi ,k \in \mathbb{Z}\);        
C. \(x = \pi + k2\pi ,k \in \mathbb{Z}\);                                                 
D. \(x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP