Câu hỏi:

14/11/2025 67 Lưu

(1,0 điểm) Cửa hàng thời trang Việt Tiến muốn kinh doanh thêm 2 loại áo thun mẫu mới với vốn đầu tư không quá \[72\] triệu đồng. Loài dài tay mua vào \[800.000\] đồng và lãi \[150.000\]một áo, loại ngắn tay mua vào \[600.000\] đồng và lãi \[120.000\]một áo. Cửa hàng ước tính nhu cầu của khách không quá 100 cái cho cả 2 loại. Lập phương án kinh doanh sao cho lãi nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi \[x,{\rm{ }}y\,(x \ge 0,\,y \ge 0,\,x,\,y \in \mathbb{N})\] lần lượt là số áo dài tay và ngắn tay mà cửa hàng nên mua để kinh doanh lãi nhất.

Theo yêu cầu bài toán, ta có hệ bất phương trình \[\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 100\\8x + 6y \le 720\end{array} \right.\]\[\left( 1 \right)\]

Ta cần tìm \[x,\,y\] để biểu thức \[F = 150.000x + 120.000y\] đạt GTLN trên miền nghiệm của \[\left( 1 \right)\].

Cửa hàng thời trang (ảnh 1)

Biểu diễn miền nghiệm của hệ bất phương trình \[\left( 1 \right)\]:

Miền nghiệm của hệ bất phương trình là tứ giác \[OABC\].

Các điểm ở đỉnh tứ giác có tọa độ: \[O\left( {0;\,0} \right),\,A\left( {0;\,100} \right),\,B\left( {60;\,40} \right),\,C\left( {90;\,0} \right)\].

Tại \[O\left( {0;\,0} \right)\]: \[F = 0\]

Tại \[A\left( {0;\,100} \right)\]: \[F = 12.000.000\]

Tại \[B\left( {60;\,40} \right)\]: \[F = 13.800.000\]

Tại \[C\left( {90;\,0} \right)\]: \[F = 13.500.000\]

Vậy cửa hang nên nhập \[60\] cái áo dài tay và \[40\] cái áo ngắn tay để kinh doanh thì có lãi nhất và lãi thu được là \[13.800.000\] đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[2x - y \le 2\];                                                     
B. \[2x - 3y \le 0\];
C. \[2x + y < 2\];                                                      
D. \[2x - y > 2\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Gọi phương trình đường thẳng \[d\] có dạng: \[y = ax + b\].

Đường thẳng \[d\] đi qua điểm \[\left( {1;\,0} \right)\]\[\left( {0;\, - 2} \right)\] nên ta có hệ phương trình:

\[\left\{ \begin{array}{l}a + b = 0\\0a + b = - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 2\end{array} \right.\]

Vậy \[d\]: \[y = 2x - 2\]hay \[2x--y = 2\]

Lấy điểm \[\left( {0;\,1} \right)\] thuộc miền nghiệm của bất phương trình cần tìm, thay tọa độ điểm \[\left( {0;\,1} \right)\] vào biểu thức \[2x--y = 2\] ta được: \[2.0--1 = - 1 < 2\].

Vậy miền nghiệm được biểu diễn bởi nửa mặt phẳng không bị gạch (kể cả đường thẳng \[d\]) là miền nghiệm của bất phương trình\[2x--y \le 2\].

Câu 2

A. \(\left\{ {12;\,3} \right\}\);                           
B. \(\emptyset \);                                  
C. \(\left\{ {1;\,2} \right\}\);                       
D. \(\left\{ {1;\,2;\,3} \right\}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Các tập con của tập \(A\) là: \(\left\{ 1 \right\},\,\left\{ 2 \right\},\,\left\{ 3 \right\},\,\,\left\{ {1;\,\,2} \right\},\,\left\{ {1;\,\,3} \right\},\,\,\left\{ {2;\,\,3} \right\},\,\,\left\{ {1;\,\,2;\,\,3} \right\},\,\,\emptyset \).

Vậy tập không là con của tập \(A\) là: \(\left\{ {12;\,3} \right\}\).

Câu 3

A. \[\frac{a}{{\sqrt 3 }}\];                               
B. \[\frac{{3a}}{{\sqrt 3 }}\];                             
C. \[\frac{{5a}}{{\sqrt 3 }}\];                              
D. \[\frac{{7a}}{{\sqrt 3 }}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[M\left( {0;\,1} \right)\];                           
B. \[N\left( { - 1;\,1} \right)\];            
C. \[P\left( {1;\,3} \right)\];                      
D. \[Q\left( { - 1;\,0} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. 4;                                   
B. 6;                              
C. 8;                                       
D. 10.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\tan \left( {180^\circ - \alpha } \right) = - \tan \alpha \left( {\alpha \ne 90^\circ } \right)\);             
B. \({\rm{cos}}\left( {180^\circ - \alpha } \right) = {\rm{cos}}\alpha \);
C. \(\cot \left( {180^\circ - \alpha } \right) = - \cot \alpha \left( {0^\circ < \alpha < 180^\circ } \right)\).                        
D. \(\sin \left( {180^\circ - \alpha } \right) = \sin \alpha \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP