Câu hỏi:

14/11/2025 8 Lưu

(1,0 điểm) Cửa hàng thời trang Việt Tiến muốn kinh doanh thêm 2 loại áo thun mẫu mới với vốn đầu tư không quá \[72\] triệu đồng. Loài dài tay mua vào \[800.000\] đồng và lãi \[150.000\]một áo, loại ngắn tay mua vào \[600.000\] đồng và lãi \[120.000\]một áo. Cửa hàng ước tính nhu cầu của khách không quá 100 cái cho cả 2 loại. Lập phương án kinh doanh sao cho lãi nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi \[x,{\rm{ }}y\,(x \ge 0,\,y \ge 0,\,x,\,y \in \mathbb{N})\] lần lượt là số áo dài tay và ngắn tay mà cửa hàng nên mua để kinh doanh lãi nhất.

Theo yêu cầu bài toán, ta có hệ bất phương trình \[\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 100\\8x + 6y \le 720\end{array} \right.\]\[\left( 1 \right)\]

Ta cần tìm \[x,\,y\] để biểu thức \[F = 150.000x + 120.000y\] đạt GTLN trên miền nghiệm của \[\left( 1 \right)\].

Cửa hàng thời trang (ảnh 1)

Biểu diễn miền nghiệm của hệ bất phương trình \[\left( 1 \right)\]:

Miền nghiệm của hệ bất phương trình là tứ giác \[OABC\].

Các điểm ở đỉnh tứ giác có tọa độ: \[O\left( {0;\,0} \right),\,A\left( {0;\,100} \right),\,B\left( {60;\,40} \right),\,C\left( {90;\,0} \right)\].

Tại \[O\left( {0;\,0} \right)\]: \[F = 0\]

Tại \[A\left( {0;\,100} \right)\]: \[F = 12.000.000\]

Tại \[B\left( {60;\,40} \right)\]: \[F = 13.800.000\]

Tại \[C\left( {90;\,0} \right)\]: \[F = 13.500.000\]

Vậy cửa hang nên nhập \[60\] cái áo dài tay và \[40\] cái áo ngắn tay để kinh doanh thì có lãi nhất và lãi thu được là \[13.800.000\] đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \(\widehat {PAQ} = \widehat {BQA} - \widehat {BPA} = 48^\circ - 35^\circ = 13^\circ \) (tính chất góc ngoài trong tam giác).

Áp dụng định lí sin trong tam giác \(APQ\), ta có: \(\frac{{PQ}}{{\sin \widehat {PAQ}}} = \frac{{AQ}}{{\sin \widehat {BPA}}}\).

Thay số: \(\frac{{300}}{{\sin 13^\circ }} = \frac{{AQ}}{{\sin 35^\circ }}\)\( \Rightarrow AQ \approx 764,93\;{\rm{(m)}}\).

Tam giác \(ABQ\) vuông tại \(B\) nên \(AB = AQ \cdot \sin 48^\circ \)\( \approx 568,46\,{\rm{(m)}}\).

Vậy chiều cao của tháp hải đăng xấp xỉ bằng 568,46 m.

Câu 2

A. \[\frac{a}{{\sqrt 3 }}\];                               
B. \[\frac{{3a}}{{\sqrt 3 }}\];                             
C. \[\frac{{5a}}{{\sqrt 3 }}\];                              
D. \[\frac{{7a}}{{\sqrt 3 }}\].

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Diện tích tam giác \[ABC\] đều là:

\[S = AB.AC.sinA = \frac{1}{2}.2a.2a.sin60^\circ = {a^2}\sqrt 3 \]

Nửa chu vi tam giác \[ABC\] là:

\[p = \frac{{2a + 2a + 2a}}{2} = 3a\]

Bán kính đường tròn nội tiếp tam giác \[ABC\] là:

\[r = \frac{S}{p} = \frac{{{a^2}\sqrt 3 }}{{3a}} = \frac{a}{{\sqrt 3 }}\].

Câu 3

A. \[1\];                            
B. \[ - 2\]\[;\]                              
C. \[0\]\[;\]                            
D. \[2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({a^2} = {b^2} + {c^2} - 2bc.\cos A\);      
B. \(b = \frac{{c.\sin B}}{{\sin C}}\);
C. \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \) ;              
D. \(S = ab.\sin C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[2x - y \le 2\];                                                     
B. \[2x - 3y \le 0\];
C. \[2x + y < 2\];                                                      
D. \[2x - y > 2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[ - 3x + 2y - 4 > 0\];                                            
B. \[x + 3y < 0\];
C. \[3x - y > 0\];                                                        
D. \[2x - y + 4 > 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\tan \left( {180^\circ - \alpha } \right) = - \tan \alpha \left( {\alpha \ne 90^\circ } \right)\);             
B. \({\rm{cos}}\left( {180^\circ - \alpha } \right) = {\rm{cos}}\alpha \);
C. \(\cot \left( {180^\circ - \alpha } \right) = - \cot \alpha \left( {0^\circ < \alpha < 180^\circ } \right)\).                        
D. \(\sin \left( {180^\circ - \alpha } \right) = \sin \alpha \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP