Cho tứ diện \[ABCD\] trong đó có tam giác \[BCD\] không cân. Gọi \[M,\,\,N\] lần lượt là trung điểm của \[AB,\,\,CD\] và \[G\] là trung điểm của đoạn \[MN.\] Gọi \[{A_1}\] là giao điểm của \[AG\] và \[\left( {BCD} \right).\] Khẳng định nào sau đây đúng?
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: D
|
Mặt phẳng \[\left( {ABN} \right)\] cắt mặt phẳng \[\left( {BCD} \right)\] theo giao tuyến \[BN\,.\] Mà \[AG \subset \left( {ABN} \right)\] suy ra \[AG\] cắt \[BN\] tại điểm \[{A_1}\,.\] Qua \[M\] dựng \[MP\,{\rm{//}}\,A{A_1}\] với \[M \in BN\,.\] Có \[M\] là trung điểm của \[AB\] suy ra \[P\] là trung điểm \[B{A_1}\, \Rightarrow \,\,BP = P{A_1}\,\,\,\,\,\,\,\left( 1 \right).\] |
![]() |
Tam giác \[MNP\] có \[MP\,{\rm{//}}\,G{A_1}\] và \[G\] là trung điểm của \[MN\,.\]
\[ \Rightarrow \] \[{A_1}\] là trung điểm của \[NP\,\, \Rightarrow \,\,P{A_1} = N{A_1}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right).\]
Từ \[\left( 1 \right),\left( 2 \right)\] suy ra \[BP = P{A_1} = {A_1}N\,\, \Rightarrow \,\,\frac{{B{A_1}}}{{BN}} = \frac{2}{3}\] mà \[N\] là trung điểm của \[CD\,.\]
Do đó, \[{A_1}\] là trọng tâm của tam giác \[BCD\,.\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
