Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[10.\] \[M\] là điểm trên \[SA\] sao cho \[\frac{{SM}}{{SA}} = \frac{2}{3}.\] Một mặt phẳng \[\left( \alpha \right)\] đi qua \[M\] song song với \[AB\] và \[CD,\] cắt hình chóp theo một tứ giác có diện tích là
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: A
|
Ta có \[\left( \alpha \right)\,{\rm{//}}\,AB\] và \[CD\] mà \[A,\,\,B,\,\,C,\,\,D\] đồng phẳng suy ra \[\left( \alpha \right)\,{\rm{//}}\,\left( {ABCD} \right).\] Giả sử \[\left( \alpha \right)\] cắt các mặt bên \[\left( {SAB} \right),\,\,\left( {SBC} \right),\,\,\left( {SCD} \right),\,\,\left( {SDA} \right)\] lần lượt tại các điểm \[N,\,\,P,\,\,Q\] với \[N \in SB,\,\,P \in SC,\,\,Q \in SD\,\] Suy ra \[\left( \alpha \right) \equiv \left( {MNPQ} \right)\,.\] |
![]() |
Khi đó \[MN\,{\rm{//}}\,AB\]\[ \Rightarrow \]\[MN\] là đường trung bình tam giác \[SAB\] \[ \Rightarrow \,\,\,\frac{{SM}}{{SA}} = \frac{{MN}}{{AB}} = \frac{2}{3}\,.\]
Tương tự, ta có được \[\frac{{NP}}{{BC}} = \frac{{PQ}}{{CD}} = \frac{{QM}}{{DA}} = \frac{2}{3}\] và \[MNPQ\] là hình vuông.
Suy ra \[{S_{MNPQ}} = {\left( {\frac{2}{3}} \right)^2}{S_{ABCD}} = \frac{4}{9}{S_{ABCD}} = \frac{4}{9}.10.10 = \frac{{400}}{9}.\]
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
