Giả sử rằng khi tăng \(t\) năm tuổi, một máy công nghiệp \(A\) tạo ra doanh thu với tốc độ \(R'\left( t \right) = 650 - 3{t^2}\) (triệu đồng/năm), thời điểm \(t = 0\) tính từ lúc máy \(A\) bắt đầu hoạt động. Biết rằng chi phí biên cho vận hành và bảo trì là \(C'\left( t \right) = 48 + 12{t^2}\) (triệu đồng/năm), ở đây \(C\left( t \right)\) là chi phí vận hành và bảo trì của máy\(A\) khi nó được \(t\) năm tuổi.
a) Doanh thu sau 12 năm của máy\(A\) là \(\int\limits_0^{12} {\left( {650 - 3{t^2}} \right){\rm{dt}}} \) (triệu đồng).
b) Tổng chi phí vận hành và bảo trì của máy \(A\) trong 6 năm là 1152 (triệu đồng).
c) Tuổi thọ hữu ích của một máy là số năm T trước khi lợi nhuận (bằng doanh thu trừ chi phí) mà nó tạo ra bắt đầu giảm. Tuổi thọ hữu ích của máy \(A\) này là 8 năm.
d) Lợi nhuận do máy \(A\) tạo ra trong suốt thời gian tuổi thọ hữu ích của nó là 2532 triệu đồng.
Giả sử rằng khi tăng \(t\) năm tuổi, một máy công nghiệp \(A\) tạo ra doanh thu với tốc độ \(R'\left( t \right) = 650 - 3{t^2}\) (triệu đồng/năm), thời điểm \(t = 0\) tính từ lúc máy \(A\) bắt đầu hoạt động. Biết rằng chi phí biên cho vận hành và bảo trì là \(C'\left( t \right) = 48 + 12{t^2}\) (triệu đồng/năm), ở đây \(C\left( t \right)\) là chi phí vận hành và bảo trì của máy\(A\) khi nó được \(t\) năm tuổi.
a) Doanh thu sau 12 năm của máy\(A\) là \(\int\limits_0^{12} {\left( {650 - 3{t^2}} \right){\rm{dt}}} \) (triệu đồng).
b) Tổng chi phí vận hành và bảo trì của máy \(A\) trong 6 năm là 1152 (triệu đồng).
c) Tuổi thọ hữu ích của một máy là số năm T trước khi lợi nhuận (bằng doanh thu trừ chi phí) mà nó tạo ra bắt đầu giảm. Tuổi thọ hữu ích của máy \(A\) này là 8 năm.
d) Lợi nhuận do máy \(A\) tạo ra trong suốt thời gian tuổi thọ hữu ích của nó là 2532 triệu đồng.
Quảng cáo
Trả lời:
a) Đúng. Doanh thu sau 12 năm của máy\(A\) là
\(R\left( {12} \right) = \int\limits_0^{12} {R'\left( t \right){\rm{d}}t} = \int\limits_0^{12} {\left( {650 - 3{t^2}} \right){\rm{d}}t} \) (triệu đồng).
b) Đúng. Chi phí vận hành và bảo trì của máy \(A\) là \(C\left( t \right) = \int {\left( {48 + 12{t^2}} \right){\rm{d}}t} \)\( = 48t + 4{t^3} + c\).
Chi phí ban đầu là 0, tức là \(C\left( 0 \right) = 0 \Rightarrow c = 0\). Do đó, \(C\left( t \right) = 48t + 4{t^3}\).
Tổng chi phí trong 6 năm là \(C\left( 6 \right) = 48 \cdot 6 + 4 \cdot {6^3} = 1152\) (triệu đồng).
c) Sai. Ta có \[R\left( t \right) = \int {\left( {650 - 3{t^2}} \right){\rm{d}}t} = 650t - {t^3} + b\].
Từ lúc máy \(A\) bắt đầu hoạt động \(\left( {t = 0} \right)\) thì \(R\left( 0 \right) = 0 \Rightarrow b = 0\). Do đó, \(R\left( t \right) = 650t - {t^3}\).
Lợi nhuận do máy \(A\) tạo ra là \(P\left( t \right) = R\left( t \right) - C\left( t \right) = \left( {650t - {t^3}} \right) - \left( {48t + 4{t^3}} \right) = 602t - 5{t^3}\).
Ta có \(P'\left( t \right) = 602 - 15{t^2} = 0 \Rightarrow t = \sqrt {\frac{{602}}{{15}}} \,\,\,\left( {{\rm{do}}\,t \ge 0} \right)\).
Lập bảng biến thiên ta kết luận được lợi nhuận đạt cực đại tại \(t = \sqrt {\frac{{602}}{{15}}} \approx 6,33\) (năm) và sẽ bắt đầu giảm ngay sau đó nên tuổi thọ hữu ích không thể là 8 năm.
Lưu ý: Ta có thể xác định ngay \(P'\left( t \right) = R'\left( t \right) - C'\left( t \right) = 602 - 15{t^2}\) mà không cần xác định \(R\left( t \right)\).
d) Sai. Lợi nhuận do máy \(A\) tạo ra trong suốt thời gian tuổi thọ hữu ích của nó là
\(\int\limits_0^{\sqrt {\frac{{602}}{{15}}} } {\left( { - 15{t^2} + 602} \right){\rm{d}}t} \)\( \approx 2542,5\) (triệu đồng).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[h\left( t \right) = \int {h'\left( t \right){\rm{d}}t} = \frac{1}{5}\int {{{\left( {t + 3} \right)}^{\frac{1}{3}}}{\rm{d}}t} = \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} + C\].
\[h\left( 0 \right) = 0 \Leftrightarrow \frac{{9\sqrt[3]{3}}}{{20}} + C = 0 \Leftrightarrow C = - \frac{{9\sqrt[3]{3}}}{{20}} \to h\left( t \right) = \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} - \frac{{9\sqrt[3]{3}}}{{20}}\].
\[h\left( t \right) = 2,1 \Leftrightarrow \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} - \frac{{9\sqrt[3]{3}}}{{20}} = 2,1 \Leftrightarrow {\left( {t + 3} \right)^{\frac{4}{3}}} \approx 18,33 \Rightarrow t \approx 6\].
Vậy sau khi bơm khoảng 6 giờ thì độ sâu của mực nước trong hồ là 2,1 m.
Đáp án: 6.
Lời giải
a) Sai. Ta có \[h\left( t \right) = \int {v\left( t \right){\rm{dt}} = - 0,04{t^3} + 0,6{t^2} + C} \].
Tại thời điểm xuất phát \(\left( {t = 0} \right)\), độ cao của khinh khí cầu là 520 m nên
\[h\left( 0 \right) = 520 \Rightarrow C = 520\].
Vậy \[h\left( t \right) = - 0,04{t^3} + 0,6{t^2} + 520\].
b) Đúng. Tại thời điểm \(t = 3\) phút, độ cao của khinh khí cầu là \(h\left( 3 \right) = 524,32\) m.
c) Đúng. Ta có \(h'\left( t \right) = v\left( t \right) = - 0,12{t^2} + 1,2t\), suy ra \(h'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 10\end{array} \right.\).
Ta có bảng biến thiên:

Vậy độ cao tối đa của khinh khí cầu là 540 m.
d) Đúng. Khi trở lại độ cao như lúc xuất phát thì
\(h\left( t \right) = 520 \Leftrightarrow - 0,04{t^3} + 0,6{t^2} + 520 = 520 \Leftrightarrow \left[ \begin{array}{l}t = 0\\t = 15\end{array} \right.\).
Vậy sau 15 phút thì khinh khí cầu quay trở lại độ cao như lúc đầu.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


