Câu hỏi:

05/11/2025 522 Lưu

Giả sử rằng khi tăng \(t\) năm tuổi, một máy công nghiệp \(A\) tạo ra doanh thu với tốc độ \(R'\left( t \right) = 650 - 3{t^2}\) (triệu đồng/năm), thời điểm \(t = 0\) tính từ lúc máy \(A\) bắt đầu hoạt động. Biết rằng chi phí biên cho vận hành và bảo trì là \(C'\left( t \right) = 48 + 12{t^2}\) (triệu đồng/năm), ở đây \(C\left( t \right)\) là chi phí vận hành và bảo trì của máy\(A\) khi nó được \(t\) năm tuổi.

a) Doanh thu sau 12 năm của máy\(A\) \(\int\limits_0^{12} {\left( {650 - 3{t^2}} \right){\rm{dt}}} \) (triệu đồng).

b) Tổng chi phí vận hành và bảo trì của máy \(A\) trong 6 năm là 1152 (triệu đồng).

c) Tuổi thọ hữu ích của một máy là số năm T trước khi lợi nhuận (bằng doanh thu trừ chi phí) mà nó tạo ra bắt đầu giảm. Tuổi thọ hữu ích của máy \(A\) này là 8 năm.

d) Lợi nhuận do máy \(A\) tạo ra trong suốt thời gian tuổi thọ hữu ích của nó là 2532 triệu đồng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Doanh thu sau 12 năm của máy\(A\)

\(R\left( {12} \right) = \int\limits_0^{12} {R'\left( t \right){\rm{d}}t} = \int\limits_0^{12} {\left( {650 - 3{t^2}} \right){\rm{d}}t} \) (triệu đồng).

b) Đúng. Chi phí vận hành và bảo trì của máy \(A\)\(C\left( t \right) = \int {\left( {48 + 12{t^2}} \right){\rm{d}}t} \)\( = 48t + 4{t^3} + c\).

Chi phí ban đầu là 0, tức là \(C\left( 0 \right) = 0 \Rightarrow c = 0\). Do đó, \(C\left( t \right) = 48t + 4{t^3}\).

Tổng chi phí trong 6 năm là \(C\left( 6 \right) = 48 \cdot 6 + 4 \cdot {6^3} = 1152\) (triệu đồng).

c) Sai. Ta có \[R\left( t \right) = \int {\left( {650 - 3{t^2}} \right){\rm{d}}t} = 650t - {t^3} + b\].

Từ lúc máy \(A\) bắt đầu hoạt động \(\left( {t = 0} \right)\) thì \(R\left( 0 \right) = 0 \Rightarrow b = 0\). Do đó, \(R\left( t \right) = 650t - {t^3}\).

Lợi nhuận do máy \(A\) tạo ra là \(P\left( t \right) = R\left( t \right) - C\left( t \right) = \left( {650t - {t^3}} \right) - \left( {48t + 4{t^3}} \right) = 602t - 5{t^3}\).

Ta có \(P'\left( t \right) = 602 - 15{t^2} = 0 \Rightarrow t = \sqrt {\frac{{602}}{{15}}} \,\,\,\left( {{\rm{do}}\,t \ge 0} \right)\).

Lập bảng biến thiên ta kết luận được lợi nhuận đạt cực đại tại \(t = \sqrt {\frac{{602}}{{15}}} \approx 6,33\) (năm) và sẽ bắt đầu giảm ngay sau đó nên tuổi thọ hữu ích không thể là 8 năm.

Lưu ý: Ta có thể xác định ngay \(P'\left( t \right) = R'\left( t \right) - C'\left( t \right) = 602 - 15{t^2}\) mà không cần xác định \(R\left( t \right)\).

d) Sai. Lợi nhuận do máy \(A\) tạo ra trong suốt thời gian tuổi thọ hữu ích của nó là

\(\int\limits_0^{\sqrt {\frac{{602}}{{15}}} } {\left( { - 15{t^2} + 602} \right){\rm{d}}t} \)\( \approx 2542,5\) (triệu đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \[h\left( t \right) = \int {h'\left( t \right){\rm{d}}t} = \frac{1}{5}\int {{{\left( {t + 3} \right)}^{\frac{1}{3}}}{\rm{d}}t} = \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} + C\].

\[h\left( 0 \right) = 0 \Leftrightarrow \frac{{9\sqrt[3]{3}}}{{20}} + C = 0 \Leftrightarrow C = - \frac{{9\sqrt[3]{3}}}{{20}} \to h\left( t \right) = \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} - \frac{{9\sqrt[3]{3}}}{{20}}\].

\[h\left( t \right) = 2,1 \Leftrightarrow \frac{3}{{20}}{\left( {t + 3} \right)^{\frac{4}{3}}} - \frac{{9\sqrt[3]{3}}}{{20}} = 2,1 \Leftrightarrow {\left( {t + 3} \right)^{\frac{4}{3}}} \approx 18,33 \Rightarrow t \approx 6\].

Vậy sau khi bơm khoảng 6 giờ thì độ sâu của mực nước trong hồ là 2,1 m.

Đáp án: 6.

Lời giải

 

Media VietJack

Chọn hệ trục \[Oxy\] sao cho gốc toạ độ \[O\] trùng với giao điểm \[AB,CD\].

Đường tròn lớn có phương trình: \[{x^2} + {y^2} = 25 \Rightarrow y = \pm \sqrt {25 - {x^2}} \].

Ta có \[OA = OB = OC = OD = \frac{4}{2} = 2\].

Đường tròn nhỏ có tâm trên trục \[Ox\]\[\left( {4;0} \right)\] nên có phương trình:

\[{\left( {x - 4} \right)^2} + {y^2} = 4 \Rightarrow y = \pm \sqrt {4 - {{\left( {x - 4} \right)}^2}} \].

Ta có: \[\sqrt {25 - {x^2}} = \sqrt {4 - {{\left( {x - 4} \right)}^2}} \Leftrightarrow x = \frac{{37}}{8}\].

Gọi \(H\) là phần hình phẳng gạch chéo.

Ta có hình phẳng \(H\) giới hạn bởi các đường \[y = \sqrt {25 - {x^2}} ,y = \sqrt {4 - {{\left( {x - 4} \right)}^2}} ,y = 0\].

Đặt \({H_1} = \left\{ {y = \sqrt {4 - {{\left( {x - 4} \right)}^2}} ,y = 0,x = 2,x = \frac{{37}}{8}} \right\}\); \({H_2} = \left\{ {y = \sqrt {25 - {x^2}} ,y = 0,x = \frac{{37}}{8},x = 5} \right\}\).

Diện tích của hình \({H_1}\) \[{S_{{H_1}}} = \int\limits_2^{\frac{{37}}{8}} {\sqrt {4 - {{\left( {x - 4} \right)}^2}} } {\rm{d}}x\].

Diện tích của hình \({H_2}\)\({S_{{H_2}}} = \int\limits_{\frac{{37}}{8}}^5 {\sqrt {25 - {x^2}} } {\rm{d}}x\).

Khi đó diện tích của hình \(H\) là: \[{S_H} = \int\limits_2^{\frac{{37}}{8}} {\sqrt {4 - {{\left( {x - 4} \right)}^2}} } {\rm{d}}x + \int\limits_{\frac{{37}}{8}}^5 {\sqrt {25 - {x^2}} } {\rm{d}}x\].

Diện tích của đường tròn lớn là: \({S_1} = \pi \cdot {5^2} = 25\pi \).

Diện tích phần sơn 1 mặt của chi tiết máy

\[S = 25\pi - 8{S_H} = 25\pi - 8\left( {\int\limits_2^{\frac{{37}}{8}} {\sqrt {4 - {{\left( {x - 4} \right)}^2}} } {\rm{d}}x + \int\limits_{\frac{{37}}{8}}^5 {\sqrt {25 - {x^2}} } {\rm{d}}x} \right) \approx 39,7\,({\rm{d}}{{\rm{m}}^{\rm{2}}}) = 0,397({{\rm{m}}^{\rm{2}}})\].

Chi phí để sơn hoàn thiện chi tiết máy: \[2 \cdot 0,397 \cdot 82 \approx 65\] (nghìn đồng).

Đáp án: 65.