Câu hỏi:

05/11/2025 37 Lưu

Cho hình chóp \(S.ABCD\) có đáy là hình chữ nhật, cạnh bên \(SA\) vuông góc với đáy (tham khảo hình bên)

Media VietJack

Khẳng định nào sau đây sai?

A. \(CD \bot SC.\)     
B. \(CD \bot SA.\)      
C. \[BC \bot AB.\]        
D. \(SA \bot AB.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dễ thấy \(CD \bot \left( {SAD} \right) \Rightarrow CD \bot SD\). Khi đó \(CD \bot SC\) dẫn tới trong tam giác \(SCD\) có 2 góc vuông dẫn tới vô lí. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Media VietJack

a) Đúng. \(\left\{ \begin{array}{l}BD \bot AC\\BD \bot SA\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right)\). Khi đó \(\left\{ \begin{array}{l}BD \subset \left( {SBD} \right)\\BD \bot \left( {SAC} \right)\end{array} \right. \Rightarrow \left( {SBD} \right) \bot \left( {SAC} \right)\).

b) Đúng.  Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).

c) Đúng. \(SA \bot \left( {ABCD} \right) \Rightarrow \)Hình chiếu của \(S\) lên mặt phẳng \(\left( {ABCD} \right)\)\(A\).

\(B,C \in \left( {ABCD} \right) \Rightarrow \) Hình chiếu của \(B,C\) lên mặt phẳng \(\left( {ABCD} \right)\)\(B,C\).

Do đó tam giác \(ABC\) là hình chiếu của tam giác \(SCB\) lên mặt phẳng \(\left( {ABCD} \right)\).

d) Sai. Kẻ \(AK \bot SD\,\,\left( {K \in SD} \right)\). Ta có \(CD \bot AK\,\,\left( {{\rm{do}}\,\,CD \bot \left( {SAD} \right)} \right)\).

Do đó \(AK \bot \left( {SCD} \right) \Rightarrow d\left( {A,\left( {SCD} \right)} \right) = AK = \frac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{a\sqrt 6 }}{3}\).

Lại có \(AB\,{\rm{//}}\,CD\) nên \(AB\,{\rm{//}}\left( {SCD} \right)\), suy ra \(d\left( {B,\left( {SCD} \right)} \right) = d\left( {A,\left( {SCD} \right)} \right) = \frac{{a\sqrt 6 }}{3}\).

Lời giải

Media VietJack

a) Đúng.từ giả thiết, ta có \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\).

Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\).

b) Sai. \(ABCD\) là hình chữ nhật nên\(AC\) không vuông góc với \(BD\), từ đó ta suy ra được mặt phẳng \(\left( {SAC} \right)\) không vuông góc với mặt phẳng \(\left( {SBD} \right)\).

c) Sai. Ta có \(\left\{ {\begin{array}{*{20}{l}}{CD \bot AD}\\{CD \bot SA{\rm{ }}\left( {{\rm{do }}SA \bot \left( {ABCD} \right)} \right)}\end{array} \Rightarrow CD \bot \left( {SAD} \right)} \right. \Rightarrow CD \bot SD\).

Từ đó suy ra \(\widehat {ADS}\) là một góc phẳng nhị diện của góc nhị diện \(\left[ {A,DC,S} \right]\).

Tam giác \(SAD\) vuông tại \(A\) nên \(\tan \widehat {ADS} = \frac{{SA}}{{AD}} = \frac{{2a\sqrt 3 }}{{2a}} = \sqrt 3 \), suy ra \(\widehat {ADS} = 60^\circ \).

Vậy số đo của góc nhị diện \(\left[ {A,DC,S} \right]\) bằng \(60^\circ \).

d) Đúng. Vì \(CD \bot \left( {SAD} \right)\). Suy ra \(SD\) là hình chiếu của \(SC\) trên mặt phẳng \(\left( {SAD} \right)\).

Do vậy \(\left( {SC,\left( {SAD} \right)} \right) = \left( {SC,SD} \right) = \widehat {CSD}\).

Tam giác \(SAD\) vuông tại \(A\) có: \(SD = \sqrt {S{A^2} + A{D^2}} = 4a;\,\,SC = \sqrt {S{D^2} + C{D^2}} = a\sqrt {17} \).

Tam giác \(SDC\) vuông tại \(D\) có: \({\rm{cos}}\widehat {CSD} = \frac{{SD}}{{SC}} = \frac{{4a}}{{a\sqrt {17} }} = \frac{4}{{\sqrt {17} }}.\) Vậy \({\rm{cos}}\alpha = \frac{4}{{\sqrt {17} }}\).

Câu 6

A. \(\left( {A'B'C'D'} \right)\).         
B. \(\left( {A'ADD'} \right)\).   
C. \(\left( {C'BA'} \right)\).   
D. \(\left( {ACD'} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP