Một đèn thả gỗ có dạng hình chóp cụt đều như hình bên. Đáy và mặt trên là các hình vuông tương ứng có cạnh bằng \(40{\rm{cm, 20cm}}\), cạnh bên của đèn dài \(10\sqrt 5 \,{\rm{cm}}\). Mặt bên và mặt trên của đèn tạo thành góc nhị diện có số đo bằng bao nhiêu độ?

Quảng cáo
Trả lời:
Mô hình hóa chiếc đèn như hình dưới đây.

Gọi \(M,{\rm{ }}M'\) lần lượt là trung điểm của cạnh \(DC\) và \(D'C'\). Dễ chứng minh \(MM' \bot DC\) và \(OM \bot DC\) (\(OM\) là đường trung bình của \(\Delta ACD\)).
Ta có \[\left\{ \begin{array}{l}\left( {ABCD} \right) \cap \left( {DCC'D'} \right) = DC\\OM \subset \left( {ABCD} \right),OM \bot DC\\MM' \subset \left( {DCC'D'} \right),MM' \bot DC\end{array} \right.\] nên \(\widehat {OMM'}\) là góc phẳng nhị diện của góc nhị diện tạo bởi mặt bên và mặt trên của đèn.
Trong mặt phẳng \(\left( {ABCD} \right)\), gọi \(H = OM \cap AB\), khi đó \(H\) là trung điểm của \(AB\).
Ta có \(\left\{ \begin{array}{l}HM\,{\rm{//}}\,AD,\,\,HM = AD = 20\,\,{\rm{cm}}\\O'M'\,{\rm{//}}\,A'D',\,\,O'M' = \frac{1}{2}A'D' = \frac{{40}}{2} = 20\,\,{\rm{cm}}\\AD\,{\rm{//}}\,A'D'\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}HM\,{\rm{//}}\,O'M'\\HM = O'M'\end{array} \right.\)\( \Rightarrow HMM'O'\) là hình bình hành.
Dễ chứng minh \(BDO'B'\) là hình bình hành, suy ra \(O'D = BB' = 10\sqrt 5 \,\,{\rm{cm}}\).
\(OD = \frac{1}{2}BD = \frac{1}{2} \cdot 20\sqrt 2 = 10\sqrt 2 \,{\rm{cm}}\).
\(OO' = \sqrt {O'{D^2} - O{D^2}} = \sqrt {{{\left( {10\sqrt 5 } \right)}^2} - {{\left( {10\sqrt 2 } \right)}^2}} = 10\sqrt 3 \,\,{\rm{cm}}\).
\(OH = \frac{1}{2}BC = 10\,{\rm{cm}}\) (\(OH\) là đường trung bình của \(\Delta ABC\)).
Xét \(\Delta OO'H\) vuông tại \(O\), \(\tan \widehat {OHO'} = \frac{{OO'}}{{OH}} = \frac{{10\sqrt 3 }}{{10}} = \sqrt 3 \Rightarrow \widehat {OHO'} = 60^\circ \).
Mà \(HMM'O'\) là hình bình hành nên \(\widehat {OMM'} + \widehat {OHO'} = 180^\circ \Rightarrow \widehat {OMM'} = 120^\circ \).
Đáp án: 120.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Đúng. \(\left\{ \begin{array}{l}BD \bot AC\\BD \bot SA\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right)\). Khi đó \(\left\{ \begin{array}{l}BD \subset \left( {SBD} \right)\\BD \bot \left( {SAC} \right)\end{array} \right. \Rightarrow \left( {SBD} \right) \bot \left( {SAC} \right)\).
b) Đúng. Ta có \(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\end{array} \right. \Rightarrow CD \bot \left( {SAD} \right)\).
c) Đúng. \(SA \bot \left( {ABCD} \right) \Rightarrow \)Hình chiếu của \(S\) lên mặt phẳng \(\left( {ABCD} \right)\) là \(A\).
\(B,C \in \left( {ABCD} \right) \Rightarrow \) Hình chiếu của \(B,C\) lên mặt phẳng \(\left( {ABCD} \right)\) là \(B,C\).
Do đó tam giác \(ABC\) là hình chiếu của tam giác \(SCB\) lên mặt phẳng \(\left( {ABCD} \right)\).
d) Sai. Kẻ \(AK \bot SD\,\,\left( {K \in SD} \right)\). Ta có \(CD \bot AK\,\,\left( {{\rm{do}}\,\,CD \bot \left( {SAD} \right)} \right)\).
Do đó \(AK \bot \left( {SCD} \right) \Rightarrow d\left( {A,\left( {SCD} \right)} \right) = AK = \frac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{a\sqrt 6 }}{3}\).
Lại có \(AB\,{\rm{//}}\,CD\) nên \(AB\,{\rm{//}}\left( {SCD} \right)\), suy ra \(d\left( {B,\left( {SCD} \right)} \right) = d\left( {A,\left( {SCD} \right)} \right) = \frac{{a\sqrt 6 }}{3}\).
Câu 2
Lời giải
Dễ thấy \(CD \bot \left( {SAD} \right) \Rightarrow CD \bot SD\). Khi đó \(CD \bot SC\) dẫn tới trong tam giác \(SCD\) có 2 góc vuông dẫn tới vô lí. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

