Cho khối chóp\(S.ABCD\) có đáy là hình vuông cạnh \(12\) và \(SA \bot \left( {ABCD} \right)\). Biết rằng khoảng cách giữa hai đường thẳng \(AB\) và \(SD\) bằng \(6\sqrt 2 \), tính thể tích khối chóp \(S.ABCD\).
Cho khối chóp\(S.ABCD\) có đáy là hình vuông cạnh \(12\) và \(SA \bot \left( {ABCD} \right)\). Biết rằng khoảng cách giữa hai đường thẳng \(AB\) và \(SD\) bằng \(6\sqrt 2 \), tính thể tích khối chóp \(S.ABCD\).
Quảng cáo
Trả lời:

Tứ giác \[ABCD\] là hình vuông \[ \Rightarrow AB \bot AD\]. (1)
Có \[SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB\]. (2)
Từ (1) và (2) ta có \[AB \bot \left( {SAD} \right)\]. Suy ra \[AB \bot SD\].
Hai đường thẳng \(AD\), \(SB\) chéo nhau và vuông góc, mặt phẳng \[\left( {SAD} \right)\] chứa \[SD\] và vuông góc với \[AB\], cắt \[AB\] tại \[A\] nên gọi \[H\] là hình chiếu của \[A\] trên \[SD\] thì \[AH\] là đoạn vuông góc chung của \[AB\] và \[SD\]. Khi đó\[AH = d\left( {AB,SD} \right) = 6\sqrt 2 \].
Tam giác \[SAD\] vuông tại \[A\] có đường cao \[AH\] nên
\[\frac{1}{{A{H^2}}} = \frac{1}{{A{D^2}}} + \frac{1}{{A{S^2}}} \Leftrightarrow \frac{1}{{{{\left( {6\sqrt 2 } \right)}^2}}} = \frac{1}{{{{12}^2}}} + \frac{1}{{A{S^2}}} \Leftrightarrow SA = 12\].
Thể tích của khối chóp \(S.ABCD\) là \(V = \frac{1}{3}{S_{ABCD}} \cdot SA = \frac{1}{3} \cdot {12^2} \cdot 12 = 576\).
Đáp án: 576.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Dễ thấy \(CD \bot \left( {SAD} \right) \Rightarrow CD \bot SD\). Khi đó \(CD \bot SC\) dẫn tới trong tam giác \(SCD\) có 2 góc vuông dẫn tới vô lí. Chọn A.
Lời giải

a) Đúng. Vì từ giả thiết, ta có \(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\).
Ta có \(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\end{array} \right. \Rightarrow BC \bot \left( {SAB} \right)\).
b) Sai. Vì \(ABCD\) là hình chữ nhật nên\(AC\) không vuông góc với \(BD\), từ đó ta suy ra được mặt phẳng \(\left( {SAC} \right)\) không vuông góc với mặt phẳng \(\left( {SBD} \right)\).
c) Sai. Ta có \(\left\{ {\begin{array}{*{20}{l}}{CD \bot AD}\\{CD \bot SA{\rm{ }}\left( {{\rm{do }}SA \bot \left( {ABCD} \right)} \right)}\end{array} \Rightarrow CD \bot \left( {SAD} \right)} \right. \Rightarrow CD \bot SD\).
Từ đó suy ra \(\widehat {ADS}\) là một góc phẳng nhị diện của góc nhị diện \(\left[ {A,DC,S} \right]\).
Tam giác \(SAD\) vuông tại \(A\) nên \(\tan \widehat {ADS} = \frac{{SA}}{{AD}} = \frac{{2a\sqrt 3 }}{{2a}} = \sqrt 3 \), suy ra \(\widehat {ADS} = 60^\circ \).
Vậy số đo của góc nhị diện \(\left[ {A,DC,S} \right]\) bằng \(60^\circ \).
d) Đúng. Vì \(CD \bot \left( {SAD} \right)\). Suy ra \(SD\) là hình chiếu của \(SC\) trên mặt phẳng \(\left( {SAD} \right)\).
Do vậy \(\left( {SC,\left( {SAD} \right)} \right) = \left( {SC,SD} \right) = \widehat {CSD}\).
Tam giác \(SAD\) vuông tại \(A\) có: \(SD = \sqrt {S{A^2} + A{D^2}} = 4a;\,\,SC = \sqrt {S{D^2} + C{D^2}} = a\sqrt {17} \).
Tam giác \(SDC\) vuông tại \(D\) có: \({\rm{cos}}\widehat {CSD} = \frac{{SD}}{{SC}} = \frac{{4a}}{{a\sqrt {17} }} = \frac{4}{{\sqrt {17} }}.\) Vậy \({\rm{cos}}\alpha = \frac{4}{{\sqrt {17} }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



