(1,5 điểm) Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là một tứ giác lồi. Gọi \[M\] là một điểm nằm trong \[\Delta SCD\].
a) Tìm \[\left( {SMB} \right) \cap \left( {SAC} \right)\].
b) Tìm \[BM \cap \left( {SAC} \right)\].
c) Tìm thiết diện hình chóp với \[\left( {ABM} \right).\]
(1,5 điểm) Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là một tứ giác lồi. Gọi \[M\] là một điểm nằm trong \[\Delta SCD\].
a) Tìm \[\left( {SMB} \right) \cap \left( {SAC} \right)\].
b) Tìm \[BM \cap \left( {SAC} \right)\].
c) Tìm thiết diện hình chóp với \[\left( {ABM} \right).\]
Quảng cáo
Trả lời:
![Cho hình chóp \[S.ABCD\] có (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/7-1762388229.png)
a) Trong \[\left( {SDC} \right)\] gọi \[\left\{ I \right\} = SM \cap DC\].
Trong \[\left( {ABCD} \right)\] gọi \[\left\{ N \right\} = BI \cap AC\].
Ta có: \[\left\{ \begin{array}{l}N \in BI \subset \left( {SBM} \right)\\N \in AC \subset \left( {SAC} \right)\end{array} \right.\]\[ \Rightarrow N \in \left( {SAC} \right) \cap \left( {SBM} \right)\]
Mà \[S \in \left( {SAC} \right) \cap \left( {SBM} \right)\]
Vậy \[SN = \left( {SAC} \right) \cap \left( {SBM} \right)\]
b) Trong \[\left( {SBI} \right)\] gọi \[\left\{ K \right\} = BM \cap SN\]
Ta có:
Vậy \[K = BM \cap \left( {SAC} \right)\].
c) Trong \[\left( {SAC} \right)\] gọi \[E = SC \cap AK\].
Trong \[\left( {SDC} \right)\] gọi \[F = ME \cap SD\].
Ta có: giao điểm của \[\left( {MAB} \right)\] với các cạnh \[SC,{\rm{ }}SD\] lần lượt là \[E,{\rm{ }}F\] từ đó suy ra:
\[\left( {MAB} \right) \cap \left( {SAB} \right) = AB;\,\,\left( {MAB} \right) \cap \left( {SBC} \right) = BE;\,\,\left( {MAB} \right) \cap \left( {SDC} \right) = EF.\]
\[\left( {MAB} \right) \cap \left( {SAD} \right) = FE\].
Vậy thiết diện là tứ giác \[ABEF.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A

Vì \(E\) là điểm đối xứng của \(D\) qua \(C\) nên \(C\) là trung điểm của \(DE\), do đó \(DE = 2DC = 2 \cdot 3 = 6\).
Ta có: \(\overrightarrow {AE} \cdot \overrightarrow {AB} = \left( {\overrightarrow {AD} + \overrightarrow {DE} } \right) \cdot \overrightarrow {AB} = \overrightarrow {AD} \cdot \overrightarrow {AB} + \overrightarrow {DE} \cdot \overrightarrow {AB} \)
Do \(AB \bot AD\) nên \(\overrightarrow {AD} \cdot \overrightarrow {AB} = 0\).
Hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {DE} \) cùng hướng nên \(\cos \left( {\overrightarrow {AB} ,\,\,\overrightarrow {DE} } \right) = 0^\circ \).
Do đó, \(\overrightarrow {DE} \cdot \overrightarrow {AB} = \left| {\overrightarrow {DE} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos \left( {\overrightarrow {AB} ,\,\overrightarrow {DE} } \right) = DE \cdot AB \cdot \cos 0^\circ = 6 \cdot 3 \cdot 1 = 18\).
Vậy \(\overrightarrow {AE} \cdot \overrightarrow {AB} = 0 + 18 = 18\).
Lời giải
![Cho tam giác \[ABC\] có trực tâm \(H\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/7-1763354073.png)
Do \(M\) là trung điểm của cạnh \(BC\) nên ta có:
\[\overrightarrow {MH} \cdot \overrightarrow {MA} = \frac{1}{2}\left( {\overrightarrow {BH} + \overrightarrow {CH} } \right) \cdot \frac{1}{2}\left( {\overrightarrow {BA} + \overrightarrow {CA} } \right)\] \[ = \frac{1}{4}\left( {\overrightarrow {BH} \cdot \overrightarrow {BA} + \overrightarrow {BH} \cdot \overrightarrow {CA} + \overrightarrow {CH} \cdot \overrightarrow {BA} + \overrightarrow {CH} \cdot \overrightarrow {CA} } \right)\]
Vì \(H\) là trực tâm của \[\Delta ABC,\] nên \[BH \bot CA{\rm{ }},{\rm{ }}CH \bot BA\] \[ \Rightarrow \overrightarrow {BH} \cdot \overrightarrow {CA} = 0,{\rm{ }}\overrightarrow {CH} \cdot \overrightarrow {BA} = 0\].
Do đó, \[\overrightarrow {MH} \cdot \overrightarrow {MA} = \frac{1}{4}\left( {\overrightarrow {BH} \cdot \overrightarrow {BA} + \overrightarrow {CH} \cdot \overrightarrow {CA} } \right)\]
\[ = \frac{1}{4}\left[ {\overrightarrow {BH} \cdot \left( {\overrightarrow {BC} + \overrightarrow {CA} } \right) + \overrightarrow {CH} \cdot \left( {\overrightarrow {BA} - \overrightarrow {BC} } \right)} \right] = \frac{1}{4}\left( {\overrightarrow {BH} \cdot \overrightarrow {BC} - \overrightarrow {CH} \cdot \overrightarrow {BC} } \right)\]
\( = \frac{1}{4} \cdot \overrightarrow {BC} \cdot \left( {\overrightarrow {BH} - \overrightarrow {CH} } \right) = \frac{1}{4} \cdot \overrightarrow {BC} \cdot \left( {\overrightarrow {BH} + \overrightarrow {HC} } \right) = \frac{1}{4} \cdot \overrightarrow {BC} \cdot \overrightarrow {BC} = \frac{1}{4}{\overrightarrow {BC} ^2} = \frac{1}{4}B{C^2}\).
Vậy \[\overrightarrow {MH} \cdot \overrightarrow {MA} = \frac{1}{4}B{C^2}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
