Câu hỏi:

06/11/2025 104 Lưu

Một chiếc cổng hình parabol bao gồm một cửa chính hình chữ nhật ở giữa và hai cánh cửa phụ hai bên như hình vẽ.

Tính khoảng cách giữa hai chân cổng parabol ấy (đoạn AB trên hình vẽ). (ảnh 1)

Biết chiều cao cổng parabol là \(4\;{\rm{m}}\), cửa chính (ở giữa parabol) cao \(3\;{\rm{m}}\) và rộng 4 m. Tính khoảng cách giữa hai chân cổng parabol ấy (đoạn \(AB\) trên hình vẽ).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 8

Dựng trục \(Oxy\) như hình vẽ.

Tính khoảng cách giữa hai chân cổng parabol ấy (đoạn AB trên hình vẽ). (ảnh 1)

Gọi \((P):y = a{x^2} + bx + c(a \ne 0)\).

Ta có \((P)\) qua các điểm \(I(0;4),E(2;3),F( - 2;3)\) nên \(\left\{ {\begin{array}{*{20}{l}}{c = 4}\\{4a + 2b + c = 3}\\{4a - 2b + c = 3}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a =  - \frac{1}{4}}\\{b = 0}\\{c = 4}\end{array}} \right.} \right.\)

Ta có \((P):y =  - \frac{1}{4}{x^2} + 4\).

Hai điểm \(A,B\) là giao điểm của \((P)\) với \(Ox\) nên hoành độ thỏa mãn

\( - \frac{1}{4}{x^2} + 4 = 0 \Leftrightarrow x =  \pm 4\).

Do vậy \(A( - 4;0),B(4;0) \Rightarrow AB = 8\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) S, b) Đ, c) Đ, d) S

a) Trục đối xứng của đồ thị là đường thẳng \(x = 2\).

b) Đỉnh \(I\) của đồ thị hàm số có tọa độ là \((2; - 2)\).

c) Đồ thị hàm số đi qua điểm \(A(0;6)\).

b) Hàm số bậc hai có dạng \(y = a{x^2} + bx + c(a \ne 0)\). Đồ thị hàm số đi qua điểm \(A(0;6)\) nên \(a \cdot {0^2} + b \cdot 0 + c = 6 \Rightarrow c = 6\).

Mặt khác, đồ thị có toạ độ đỉnh là \(I(2; - 2)\) nên ta có:

\(\begin{array}{*{20}{c}}{\left\{ \begin{array}{l} - \frac{b}{{2a}} = 2\\a \cdot {2^2} + b \cdot 2 + 6 =  - 2\end{array} \right.}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}4a + b = 0\\4a + 2b =  - 8\end{array}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}a = 2\\b =  - 8\end{array}\end{array}{\rm{. }}} \right.} \right.\)

Vậy hàm số đã cho là \(y = 2{x^2} - 8x + 6\).

Câu 2

A. \(\overrightarrow {AN}  = \frac{1}{3}\overrightarrow {AB}  + \frac{2}{3}\overrightarrow {AC} \). 

B. \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AB}  - \frac{5}{6}\overrightarrow {AC} \).

C. \(\overrightarrow {AN}  = \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).
D. \(\overrightarrow {AN}  =  - \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).

Lời giải

Đáp án đúng là: C

Cho tam giác ABC . Lấy điểm  N thuộc cạnh BC  sao cho NB = 5/6 BC . Hãy phân tích vecto AN  theo các vectơ  vec A  và vec AC . (ảnh 1)

Ta có \(N\) thuộc cạnh \(BC\) sao cho \(MB = \frac{5}{6}BC \Rightarrow \overrightarrow {CN}  = \frac{1}{6}\overrightarrow {CB} \).

Ta có \(\overrightarrow {AN}  = \overrightarrow {AC}  + \overrightarrow {CN}  = \overrightarrow {AC}  + \frac{1}{6}\overrightarrow {CB} \) \( = \overrightarrow {AC}  + \frac{1}{6}\left( {\overrightarrow {AB}  - \overrightarrow {AC} } \right) = \frac{1}{6}\overrightarrow {AB}  + \frac{5}{6}\overrightarrow {AC} \).

Câu 3

A. \(\overrightarrow {AM} \).  

B. \(\overrightarrow {MN} \). 
C. \(\overrightarrow {PB} \). 
D. \(\overrightarrow {AP} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(13,5\).

B. \(12\).  
C. \(14,5\).
D. \(13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP