Câu hỏi:

06/11/2025 8 Lưu

Một nhà máy có hai phân xưởng \(A\)\(B\) tương ứng làm ra \(60\% \) \(40\% \) sản phẩm của nhà máy. Tỉ lệ phế phẩm của hai phân xưởng \(A\)\(B\) lần lượt là \(1\% \)\(2\% \). Chọn ngẫu nhiên một sản phẩm của nhà máy.

a) Nếu sản phẩm chọn ra thuộc phân xưởng \(A\) thì xác suất để nó không là phế phẩm là \(0,98\).

b) Xác suất để sản phẩm chọn ra là phế phẩm và thuộc phân xưởng \(A\)\(0,006\).

c) Xác suất để sản phẩm chọn ra là phế phẩm là \(0,014\).

d) Nếu sản phẩm chọn ra là phế phẩm thì xác suất để nó thuộc phân xưởng \(A\)\(\frac{4}{7}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(X\) là biến cố: “ Sản phẩm chọn ra là phế phẩm”; \[I\]là biến cố: “Sản phẩm chọn ra thuộc phân xưởng \(A\)”; \[II\] là biến cố: “Sản phẩm chọn ra thuộc phân xưởng \(B\)”.

Ta có \(P\left( I \right) = 0,6;P\left( {II} \right) = 0,4;\)\(P\left( {X|I} \right) = 0,01;P\left( {X|II} \right) = 0,02\).

a) Sai. Nếu sản phẩm chọn ra thuộc phân xưởng \(A\) thì xác suất để nó không là phế phẩm là

 \(P\left( {\overline X |I} \right) = 1 - P\left( {X|I} \right) = 1 - 0,01 = 0,99\).

b) Đúng. Xác suất để sản phẩm chọn ra là phế phẩm và thuộc phân xưởng \(A\)

\(P\left( {XI} \right) = P\left( {X|I} \right) \cdot P\left( I \right) = 0,01 \cdot 0,6 = 0,006\).

c) Đúng. Xác suất để sản phẩm chọn ra là phế phẩm là

\(P\left( X \right) = P\left( I \right) \cdot P\left( {X|I} \right) + P\left( {II} \right) \cdot P\left( {X|II} \right)\)\( = 0,6 \cdot 0,01 + 0,4 \cdot 0,02 = 0,014\).

d) Sai. Nếu sản phẩm chọn ra là phế phẩm thì xác suất để nó thuộc phân xưởng \(A\)

\(P\left( {I|X} \right) = \frac{{P\left( {IX} \right)}}{{P\left( X \right)}} = \frac{{0,006}}{{0,014}} = \frac{3}{7}\) .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(n = 3 + 12 + 15 + 24 + 2 = 56\).

Khi đó \(\frac{n}{4} = 14,\frac{{3n}}{4} = 42\).

Do đó nhóm \(\left[ {12,5;15,5} \right)\) chứa tứ phân vị thứ nhất, nhóm \(\left[ {18,5;21,5} \right)\) chứa tứ phân vị thứ ba.

Tứ phân vị thứ nhất là \({Q_1} = 12,5 + \frac{{14 - 3}}{{12}}\left( {15,5 - 12,5} \right) = 15,25\).

Tứ phân vị thứ ba là \({Q_3} = 18,5 + \frac{{42 - \left( {3 + 12 + 15} \right)}}{{24}} \cdot \left( {21,5 - 18,5} \right) = 20\).

Vậy khoảng tứ phân vị là \({\rm{\Delta }}Q = {Q_3} - {Q_1} = 20 - 15,25 = 4,75\). Chọn B.

Lời giải

Gọi số đoạn tre có chiều dài \[2\] đốt và \[5\] đốt mà cây tre có thể phân tách được thành lần lượt là \(x\)\(y\)\(\left( {x,y \in \mathbb{N}} \right)\).

Khi đó, ta có: \(2x + 5y = 100 \Leftrightarrow y = \frac{{100 - 2x}}{5} = 20 - 2 \cdot \frac{x}{5}\).

Do \(y \in \mathbb{N}\) nên \(\left\{ {\begin{array}{*{20}{c}}{20 - 2 \cdot \frac{x}{5} \ge 0}\\{x\,\, \vdots \,\,5}\end{array}} \right. \Rightarrow x \in \left\{ {0;5;...;50} \right\}\).

Do ứng với mỗi giá trị \(x\) ta có một giá trị \(y\) tương ứng nên ta có \(11\) cách chia cây tre thành \(2\) loại có chiều dài \[2\] đốt và \[5\] đốt.

Gọi \(\Omega \) là không gian mẫu \[ \Rightarrow n\left( \Omega \right) = 11\].

Gọi biến cố \(A\): “Cây tre được chia thành đoạn có chiều dài \[2\] đốt và \[5\] đốt sao cho số đoạn \[2\] đốt nhiều hơn số đoạn \[5\] đốt đúng \[1\] đơn vị”.

Để số đoạn có có chiều dài \[2\] đốt nhiều hơn số đoạn có chiều dài \[5\] đốt đúng một đơn vị thì \(x - y = 1\). Khi đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{2x + 5y = 100}\\{x - y = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 15}\\{y = 14}\end{array}} \right. \Rightarrow n\left( A \right) = 1\).

Khi đó, \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{{11}} \approx 0,09\].

Đáp án: 0,09.

Câu 3

A. \({s^2} = 3\).           
B. \({s^2} = 6\).        
C. \({s^2} = 9\).           
D. \({s^2} = \sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP