Một nhà máy có hai phân xưởng \(A\) và \(B\) tương ứng làm ra \(60\% \) và \(40\% \) sản phẩm của nhà máy. Tỉ lệ phế phẩm của hai phân xưởng \(A\) và \(B\) lần lượt là \(1\% \)và \(2\% \). Chọn ngẫu nhiên một sản phẩm của nhà máy.
a) Nếu sản phẩm chọn ra thuộc phân xưởng \(A\) thì xác suất để nó không là phế phẩm là \(0,98\).
b) Xác suất để sản phẩm chọn ra là phế phẩm và thuộc phân xưởng \(A\) là \(0,006\).
c) Xác suất để sản phẩm chọn ra là phế phẩm là \(0,014\).
d) Nếu sản phẩm chọn ra là phế phẩm thì xác suất để nó thuộc phân xưởng \(A\) là \(\frac{4}{7}\).
Quảng cáo
Trả lời:
Gọi \(X\) là biến cố: “ Sản phẩm chọn ra là phế phẩm”; \[I\]là biến cố: “Sản phẩm chọn ra thuộc phân xưởng \(A\)”; \[II\] là biến cố: “Sản phẩm chọn ra thuộc phân xưởng \(B\)”.
Ta có \(P\left( I \right) = 0,6;P\left( {II} \right) = 0,4;\)\(P\left( {X|I} \right) = 0,01;P\left( {X|II} \right) = 0,02\).
a) Sai. Nếu sản phẩm chọn ra thuộc phân xưởng \(A\) thì xác suất để nó không là phế phẩm là
\(P\left( {\overline X |I} \right) = 1 - P\left( {X|I} \right) = 1 - 0,01 = 0,99\).
b) Đúng. Xác suất để sản phẩm chọn ra là phế phẩm và thuộc phân xưởng \(A\) là
\(P\left( {XI} \right) = P\left( {X|I} \right) \cdot P\left( I \right) = 0,01 \cdot 0,6 = 0,006\).
c) Đúng. Xác suất để sản phẩm chọn ra là phế phẩm là
\(P\left( X \right) = P\left( I \right) \cdot P\left( {X|I} \right) + P\left( {II} \right) \cdot P\left( {X|II} \right)\)\( = 0,6 \cdot 0,01 + 0,4 \cdot 0,02 = 0,014\).
d) Sai. Nếu sản phẩm chọn ra là phế phẩm thì xác suất để nó thuộc phân xưởng \(A\) là
\(P\left( {I|X} \right) = \frac{{P\left( {IX} \right)}}{{P\left( X \right)}} = \frac{{0,006}}{{0,014}} = \frac{3}{7}\) .
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Nhóm chứa mốt là \(\left[ {8;9} \right)\).
Mốt của mẫu số liệu là \({M_o} = 8 + \frac{{10 - 7}}{{2 \cdot 10 - 7 - 5}}\left( {9 - 8} \right) = 8,375 \approx 8,38\). Chọn B.
Câu 2
Lời giải
Ta có bảng sau:
|
Chiều cao |
\(\left[ {150;155} \right)\) |
\(\left[ {155;160} \right)\) |
\(\left[ {160;165} \right)\) |
\(\left[ {165;170} \right)\) |
\(\left[ {170;175} \right)\) |
|
Giá trị đại diện |
152,5 |
157,5 |
162,5 |
167,5 |
172,5 |
|
Tần số |
3 |
7 |
10 |
7 |
3 |
Số trung bình của mẫu số liệu ghép nhóm là
\(\bar x = \frac{{3 \cdot 152,5 + 7 \cdot 157,5 + 10 \cdot 162,5 + 7 \cdot 167,5 + 3 \cdot 172,5}}{{30}} = 162,5\).
Phương sai của mẫu số liệu ghép nhóm là
\[{s^2} = \frac{{3 \cdot {{10}^2} + 7 \cdot {5^2} + 10 \cdot {0^2} + 7 \cdot {5^2} + 5 \cdot {{10}^2}}}{{30}} = \frac{{95}}{3}\].
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \(s = \sqrt {\frac{{95}}{3}} = \frac{{\sqrt {285} }}{3}\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

