Câu hỏi:

06/11/2025 5 Lưu

Hai bạn Hùng và Cường chơi trò quay bánh xe số. Bánh xe số có \(20\) nấc điểm là \(5,10,15,.....,100\) với các vạch chia đều nhau (giả sử rằng khả năng chuyển từ nấc điểm đã có tới các nấc điểm còn lại là như nhau). Trong mỗi lượt chơi, mỗi người được quyền chọn quay \(1\) hoặc \(2\) lần và điểm số của người chơi được tính như sau:

(1) Nếu người chơi chọn quay một lần thì điểm của người chơi là điểm quay được.

(2) Nếu người chơi chọn quay \(2\) lần và tổng điểm quay được không lớn hơn \(100\) thì điểm của người chơi là tổng điểm quay được.

(3) Nếu người chơi chọn quay \(2\) lần và tổng điểm quay được lớn hơn \(100\) thì điểm người chơi là tổng điểm quay được trừ đi \(100\).

Luật chơi quy định, trong mỗi lượt chơi người nào có điểm số cao hơn sẽ thắng cuộc, hòa nhau sẽ chơi lại lượt khác. Hùng chơi trước và có điểm số là \(75\). Tính xác suất để Cường thắng cuộc ngay ở lượt chơi này (lấy kết quả đến hàng phần trăm).

Media VietJack

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(n\left( \Omega \right) = \frac{{100 - 5}}{5} + 1 = 20\).

Để Cường thắng ta có \(2\) trường hợp:

Trường hợp 1: Cường quay \(1\) lần ra điểm số lớn hơn \(75\), ta có \(5\) khả năng thuộc tập hợp \(\left\{ {80\,;85\,;90\,;95\,;100} \right\}\). Do xác suất là \({P_1} = \frac{5}{{20}} = \frac{1}{4}\).

Trường hợp 2: Cường quay lần đầu ra điểm số là \(a \le 75\), ta có \(15\) khả năng.

Do đó xác suất \({P_2} = \frac{{15}}{{20}} = \frac{3}{4}\).

Khi đó, để thắng Cường cần phải có tổng hai lần quay lớn hơn \(75\), ta có \(5\) khả năng thuộc tập hợp \(\left\{ {80 - a\,;85 - a\,;90 - a\,;95 - a\,;100 - a} \right\}\). Do đó xác suất là \({P_3} = \frac{5}{{20}} = \frac{1}{4}\).

Vậy xác suất để Cường thắng ngay ở lượt chơi này là \(P = {P_1} + {P_2}{P_3} = \frac{7}{{16}} \approx 0,44\).

Đáp án: 0,44.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(n = 3 + 12 + 15 + 24 + 2 = 56\).

Khi đó \(\frac{n}{4} = 14,\frac{{3n}}{4} = 42\).

Do đó nhóm \(\left[ {12,5;15,5} \right)\) chứa tứ phân vị thứ nhất, nhóm \(\left[ {18,5;21,5} \right)\) chứa tứ phân vị thứ ba.

Tứ phân vị thứ nhất là \({Q_1} = 12,5 + \frac{{14 - 3}}{{12}}\left( {15,5 - 12,5} \right) = 15,25\).

Tứ phân vị thứ ba là \({Q_3} = 18,5 + \frac{{42 - \left( {3 + 12 + 15} \right)}}{{24}} \cdot \left( {21,5 - 18,5} \right) = 20\).

Vậy khoảng tứ phân vị là \({\rm{\Delta }}Q = {Q_3} - {Q_1} = 20 - 15,25 = 4,75\). Chọn B.

Lời giải

Gọi số đoạn tre có chiều dài \[2\] đốt và \[5\] đốt mà cây tre có thể phân tách được thành lần lượt là \(x\)\(y\)\(\left( {x,y \in \mathbb{N}} \right)\).

Khi đó, ta có: \(2x + 5y = 100 \Leftrightarrow y = \frac{{100 - 2x}}{5} = 20 - 2 \cdot \frac{x}{5}\).

Do \(y \in \mathbb{N}\) nên \(\left\{ {\begin{array}{*{20}{c}}{20 - 2 \cdot \frac{x}{5} \ge 0}\\{x\,\, \vdots \,\,5}\end{array}} \right. \Rightarrow x \in \left\{ {0;5;...;50} \right\}\).

Do ứng với mỗi giá trị \(x\) ta có một giá trị \(y\) tương ứng nên ta có \(11\) cách chia cây tre thành \(2\) loại có chiều dài \[2\] đốt và \[5\] đốt.

Gọi \(\Omega \) là không gian mẫu \[ \Rightarrow n\left( \Omega \right) = 11\].

Gọi biến cố \(A\): “Cây tre được chia thành đoạn có chiều dài \[2\] đốt và \[5\] đốt sao cho số đoạn \[2\] đốt nhiều hơn số đoạn \[5\] đốt đúng \[1\] đơn vị”.

Để số đoạn có có chiều dài \[2\] đốt nhiều hơn số đoạn có chiều dài \[5\] đốt đúng một đơn vị thì \(x - y = 1\). Khi đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{2x + 5y = 100}\\{x - y = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 15}\\{y = 14}\end{array}} \right. \Rightarrow n\left( A \right) = 1\).

Khi đó, \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{{11}} \approx 0,09\].

Đáp án: 0,09.

Câu 3

A. \({s^2} = 3\).           
B. \({s^2} = 6\).        
C. \({s^2} = 9\).           
D. \({s^2} = \sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP