Câu hỏi:

06/11/2025 900 Lưu

Bảng số liệu ghép nhóm về chiều cao đo được (đơn vị: cm) của 30 học sinh nam lớp 12A2 đầu năm học 2024 – 2025 của một trường THPT được cho như sau:

Chiều cao

\(\left[ {150;155} \right)\)

\(\left[ {155;160} \right)\)

\(\left[ {160;165} \right)\)

\(\left[ {165;170} \right)\)

\(\left[ {170;175} \right)\)

Tần số

3

7

10

7

3

Độ lệch chuẩn của mẫu số liệu ghép nhóm trên là

A. \(\frac{{\sqrt {285} }}{3}\).               
B. \(\frac{{\sqrt {287} }}{3}\).
C. \(4\sqrt 2 \).              
D. \(\sqrt {71} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có bảng sau:

Chiều cao

\(\left[ {150;155} \right)\)

\(\left[ {155;160} \right)\)

\(\left[ {160;165} \right)\)

\(\left[ {165;170} \right)\)

\(\left[ {170;175} \right)\)

Giá trị đại diện

152,5

157,5

162,5

167,5

172,5

Tần số

3

7

10

7

3

Số trung bình của mẫu số liệu ghép nhóm là

\(\bar x = \frac{{3 \cdot 152,5 + 7 \cdot 157,5 + 10 \cdot 162,5 + 7 \cdot 167,5 + 3 \cdot 172,5}}{{30}} = 162,5\).

Phương sai của mẫu số liệu ghép nhóm là

\[{s^2} = \frac{{3 \cdot {{10}^2} + 7 \cdot {5^2} + 10 \cdot {0^2} + 7 \cdot {5^2} + 5 \cdot {{10}^2}}}{{30}} = \frac{{95}}{3}\].

Độ lệch chuẩn của mẫu số liệu ghép nhóm là \(s = \sqrt {\frac{{95}}{3}} = \frac{{\sqrt {285} }}{3}\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố bệnh nhân được điều trị bằng phác đồ \(A\) thì \(\overline A \) là biến cố bệnh nhân được điều trị bằng phác đồ \(B\). Ta có \(P\left( A \right) = P\left( {\overline A } \right) = 0,5.\)

Gọi \(X\) là biến cố bệnh nhân được chữa khỏi bệnh. Ta có \(P\left( {X|A} \right) = 0,6;\,\,P\left( {X|\overline A } \right) = 0,7.\)

Gọi \(Y\) là biến cố bệnh nhân bị tác dụng phụ nghiêm trọng. Ta có \(P\left( {Y|A} \right) = 0,05;\,\,P\left( {Y|\overline A } \right) = 0,1.\)

a) Sai. Xác suất bệnh nhân điều trị bằng phác đồ \(A\) và được chữa khỏi bệnh là:

\(P\left( {AX} \right) = P\left( A \right) \cdot P\left( {X|A} \right) = 0,5 \cdot 0,6 = 0,3.\)

b) Đúng. Xác suất để bệnh nhân bị tác dụng phụ nghiêm trọng là:

\(P\left( Y \right) = P\left( A \right) \cdot P\left( {Y|A} \right) + P\left( {\overline A } \right) \cdot P\left( {Y|\overline A } \right) = 0,5 \cdot 0,05 + 0,5 \cdot 0,1 = 0,075.\)

c) Đúng. Nếu biết bệnh nhân này gặp tác dụng phụ nghiêm trọng thì xác suất bệnh nhân được điều trị bằng phác đồ \(B\) là:

\(P\left( {\overline A |Y} \right) = \frac{{P\left( {\overline A Y} \right)}}{{P\left( Y \right)}} = \frac{{P\left( {\overline A } \right) \cdot P\left( {Y|\overline A } \right)}}{{P\left( Y \right)}} = \frac{{0,5 \cdot 0,1}}{{0,075}} \approx 0,67 > 0,65.\)

d) Đúng. Ta có \(P\left( X \right) = P\left( A \right) \cdot P\left( {X|A} \right) + P\left( {\overline A } \right) \cdot P\left( {X|\overline A } \right) = 0,5 \cdot 0,6 + 0,5 \cdot 0,7 = 0,65.\)

Do biến cố “bệnh nhân được chữa khỏi bệnh” và biến cố “bệnh nhân không bị tác dụng phụ nghiêm trọng” là độc lập với nhau. Nên xác suất bệnh nhân khỏi bệnh và không bị tác dụng phụ nghiêm trọng là:

\[P\left( {X\overline Y } \right) = P\left( {X\overline Y |A} \right)P\left( A \right) + P\left( {X\overline Y |\overline A } \right)P\left( {\overline A } \right) = \left[ {0,6 \cdot \left( {1 - 5\% } \right)} \right]0,5 + \left[ {0,7 \cdot \left( {1 - 10\% } \right)} \right]0,5 = 0,6\].

Lời giải

Đồ thị trên chỉ có hai đỉnh bậc lẻ là C E nên ta có thể tìm được một đường đi Euler từ C đến E (đường đi này đi qua mỗi cạnh đúng một lần).

Một đường đi Euler từ C đến ECABDEBCE và tổng độ dài của nó là

\(2 + 1 + 3 + 6 + 5 + 4 + 10 = 31\,\,{\rm{(km)}}\).

Để quay trở lại điểm xuất phát và có đường đi ngắn nhất, ta cần tìm một đường đi ngắn nhất từ E đến C.

Đường đi ngắn nhất từ \(E\) đến \(C\)\(EBAC\) và có độ dài là \(5 + 1 + 2 = 8\,{\rm{(km)}}\).

Vậy tổng quãng đường đưa thư có thể đi ngắn nhất là \(31 + 8 = 39\,({\rm{km}})\).

Đáp án: 39.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP