Câu hỏi:

06/11/2025 5 Lưu

Một chiếc hộp có 50 viên bi, trong đó có 30 viên bi màu xanh và 20 viên bi màu đỏ, các viên bi có kích thước và khối lượng giống nhau. Sau khi kiểm tra, người ta thấy có 70% số viên bi màu xanh được đánh số và 60% số viên bi màu đỏ được đánh số, những viên bi còn lại không đánh số. Lấy ngẫu nhiên một viên bi từ hộp đó. Biết rằng, viên bi lấy ra được đánh số, xác suất để viên bi đó có màu xanh bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố: “Viên bi lấy ra có màu xanh”.

Suy ra \(\overline A \) là biến cố: “Viên bi lấy ra có màu đỏ”.

\(B\) là biến cố: “Viên bi lấy ra được đánh số”.

Khi đó, \(P\left( {A|B} \right) = \frac{{P\left( {B|A} \right) \cdot P\left( A \right)}}{{P\left( {B|A} \right) \cdot P\left( A \right) + P\left( {B|\overline A } \right) \cdot P\left( {\overline A } \right)}}\).

Ta có \(P\left( A \right) = \frac{{30}}{{50}} = \frac{3}{5}\)\(P\left( {\overline A } \right) = \frac{2}{5}\).

\(P\left( {B|A} \right) = 70\% = 0,7\)\(P\left( {B|\overline A } \right) = 60\% = 0,6\).

Vậy \[P\left( {A|B} \right) = \frac{{0,7 \cdot \frac{3}{5}}}{{0,7 \cdot \frac{3}{5} + 0,6 \cdot \frac{2}{5}}} = \frac{7}{{11}} \approx 0,64\].

Đáp án: 0,64.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(n = 3 + 12 + 15 + 24 + 2 = 56\).

Khi đó \(\frac{n}{4} = 14,\frac{{3n}}{4} = 42\).

Do đó nhóm \(\left[ {12,5;15,5} \right)\) chứa tứ phân vị thứ nhất, nhóm \(\left[ {18,5;21,5} \right)\) chứa tứ phân vị thứ ba.

Tứ phân vị thứ nhất là \({Q_1} = 12,5 + \frac{{14 - 3}}{{12}}\left( {15,5 - 12,5} \right) = 15,25\).

Tứ phân vị thứ ba là \({Q_3} = 18,5 + \frac{{42 - \left( {3 + 12 + 15} \right)}}{{24}} \cdot \left( {21,5 - 18,5} \right) = 20\).

Vậy khoảng tứ phân vị là \({\rm{\Delta }}Q = {Q_3} - {Q_1} = 20 - 15,25 = 4,75\). Chọn B.

Lời giải

Gọi số đoạn tre có chiều dài \[2\] đốt và \[5\] đốt mà cây tre có thể phân tách được thành lần lượt là \(x\)\(y\)\(\left( {x,y \in \mathbb{N}} \right)\).

Khi đó, ta có: \(2x + 5y = 100 \Leftrightarrow y = \frac{{100 - 2x}}{5} = 20 - 2 \cdot \frac{x}{5}\).

Do \(y \in \mathbb{N}\) nên \(\left\{ {\begin{array}{*{20}{c}}{20 - 2 \cdot \frac{x}{5} \ge 0}\\{x\,\, \vdots \,\,5}\end{array}} \right. \Rightarrow x \in \left\{ {0;5;...;50} \right\}\).

Do ứng với mỗi giá trị \(x\) ta có một giá trị \(y\) tương ứng nên ta có \(11\) cách chia cây tre thành \(2\) loại có chiều dài \[2\] đốt và \[5\] đốt.

Gọi \(\Omega \) là không gian mẫu \[ \Rightarrow n\left( \Omega \right) = 11\].

Gọi biến cố \(A\): “Cây tre được chia thành đoạn có chiều dài \[2\] đốt và \[5\] đốt sao cho số đoạn \[2\] đốt nhiều hơn số đoạn \[5\] đốt đúng \[1\] đơn vị”.

Để số đoạn có có chiều dài \[2\] đốt nhiều hơn số đoạn có chiều dài \[5\] đốt đúng một đơn vị thì \(x - y = 1\). Khi đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{2x + 5y = 100}\\{x - y = 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 15}\\{y = 14}\end{array}} \right. \Rightarrow n\left( A \right) = 1\).

Khi đó, \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{1}{{11}} \approx 0,09\].

Đáp án: 0,09.

Câu 4

A. \({s^2} = 3\).           
B. \({s^2} = 6\).        
C. \({s^2} = 9\).           
D. \({s^2} = \sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP