Có hai phác đồ điều trị \(A\) và \(B\) cho một loại bệnh. Phác đồ \(A\) có xác suất chữa khỏi bệnh là \(60\% \) và xác suất gây tác dụng phụ nghiêm trọng là \(5\% .\) Phác đồ \(B\) có xác suất chữa khỏi bệnh là \(70\% \) và xác suất gây tác dụng phụ nghiêm trọng là \(10\% .\) Một bệnh nhân được điều trị ngẫu nhiên bằng một trong hai phác đồ (xác suất chọn mỗi phác đồ là \(50\% \)).
a) Xác suất bệnh nhân điều trị bằng phác đồ \(A\) và được chữa khỏi bệnh là \(0,6.\)
b) Xác suất để bệnh nhân bị tác dụng phụ nghiêm trọng là \(0,075.\)
c) Nếu biết bệnh nhân này gặp tác dụng phụ nghiêm trọng thì xác suất bệnh nhân đã được điều trị bằng phác đồ \(B\) lớn hơn \(0,65.\)
d) Biết rằng trong mỗi phác đồ điều trị thì biến cố “bệnh nhân được chữa khỏi bệnh” và biến cố “bệnh nhân không bị tác dụng phụ nghiêm trọng” là độc lập với nhau. Xác suất bệnh nhân khỏi bệnh và không bị tác dụng phụ nghiêm trọng là \(0,6\).
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố bệnh nhân được điều trị bằng phác đồ \(A\) thì \(\overline A \) là biến cố bệnh nhân được điều trị bằng phác đồ \(B\). Ta có \(P\left( A \right) = P\left( {\overline A } \right) = 0,5.\)
Gọi \(X\) là biến cố bệnh nhân được chữa khỏi bệnh. Ta có \(P\left( {X|A} \right) = 0,6;\,\,P\left( {X|\overline A } \right) = 0,7.\)
Gọi \(Y\) là biến cố bệnh nhân bị tác dụng phụ nghiêm trọng. Ta có \(P\left( {Y|A} \right) = 0,05;\,\,P\left( {Y|\overline A } \right) = 0,1.\)
a) Sai. Xác suất bệnh nhân điều trị bằng phác đồ \(A\) và được chữa khỏi bệnh là:
\(P\left( {AX} \right) = P\left( A \right) \cdot P\left( {X|A} \right) = 0,5 \cdot 0,6 = 0,3.\)
b) Đúng. Xác suất để bệnh nhân bị tác dụng phụ nghiêm trọng là:
\(P\left( Y \right) = P\left( A \right) \cdot P\left( {Y|A} \right) + P\left( {\overline A } \right) \cdot P\left( {Y|\overline A } \right) = 0,5 \cdot 0,05 + 0,5 \cdot 0,1 = 0,075.\)
c) Đúng. Nếu biết bệnh nhân này gặp tác dụng phụ nghiêm trọng thì xác suất bệnh nhân được điều trị bằng phác đồ \(B\) là:
\(P\left( {\overline A |Y} \right) = \frac{{P\left( {\overline A Y} \right)}}{{P\left( Y \right)}} = \frac{{P\left( {\overline A } \right) \cdot P\left( {Y|\overline A } \right)}}{{P\left( Y \right)}} = \frac{{0,5 \cdot 0,1}}{{0,075}} \approx 0,67 > 0,65.\)
d) Đúng. Ta có \(P\left( X \right) = P\left( A \right) \cdot P\left( {X|A} \right) + P\left( {\overline A } \right) \cdot P\left( {X|\overline A } \right) = 0,5 \cdot 0,6 + 0,5 \cdot 0,7 = 0,65.\)
Do biến cố “bệnh nhân được chữa khỏi bệnh” và biến cố “bệnh nhân không bị tác dụng phụ nghiêm trọng” là độc lập với nhau. Nên xác suất bệnh nhân khỏi bệnh và không bị tác dụng phụ nghiêm trọng là:
\[P\left( {X\overline Y } \right) = P\left( {X\overline Y |A} \right)P\left( A \right) + P\left( {X\overline Y |\overline A } \right)P\left( {\overline A } \right) = \left[ {0,6 \cdot \left( {1 - 5\% } \right)} \right]0,5 + \left[ {0,7 \cdot \left( {1 - 10\% } \right)} \right]0,5 = 0,6\].
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Nhóm chứa mốt là \(\left[ {8;9} \right)\).
Mốt của mẫu số liệu là \({M_o} = 8 + \frac{{10 - 7}}{{2 \cdot 10 - 7 - 5}}\left( {9 - 8} \right) = 8,375 \approx 8,38\). Chọn B.
Câu 2
Lời giải
Ta có bảng sau:
|
Chiều cao |
\(\left[ {150;155} \right)\) |
\(\left[ {155;160} \right)\) |
\(\left[ {160;165} \right)\) |
\(\left[ {165;170} \right)\) |
\(\left[ {170;175} \right)\) |
|
Giá trị đại diện |
152,5 |
157,5 |
162,5 |
167,5 |
172,5 |
|
Tần số |
3 |
7 |
10 |
7 |
3 |
Số trung bình của mẫu số liệu ghép nhóm là
\(\bar x = \frac{{3 \cdot 152,5 + 7 \cdot 157,5 + 10 \cdot 162,5 + 7 \cdot 167,5 + 3 \cdot 172,5}}{{30}} = 162,5\).
Phương sai của mẫu số liệu ghép nhóm là
\[{s^2} = \frac{{3 \cdot {{10}^2} + 7 \cdot {5^2} + 10 \cdot {0^2} + 7 \cdot {5^2} + 5 \cdot {{10}^2}}}{{30}} = \frac{{95}}{3}\].
Độ lệch chuẩn của mẫu số liệu ghép nhóm là \(s = \sqrt {\frac{{95}}{3}} = \frac{{\sqrt {285} }}{3}\). Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

