Cho hình vẽ:
Khi đó:
Quảng cáo
Trả lời:
a) Đúng.
Ta có: \(\widehat {ICD} = 180^\circ - \widehat {DCx} = 180^\circ - 100^\circ = 80^\circ .\) Vậy \(\widehat {ICD} = 80^\circ .\)
b) Sai.
\(\Delta IAB\) và \(\Delta ICD\) có: \(\widehat A = \widehat {ICD}\;\,\left( { = 80^\circ } \right);\;\,\widehat {AIB} = \widehat {CID}\) (hai góc đối đỉnh). Vậy \(\Delta AIB \sim \Delta CID\;\,\left( {{\rm{g}}{\rm{.g}}} \right).\)
c) Sai.
Vì \(\Delta AIB \sim \Delta CID\) nên \(\frac{{AB}}{{CD}} = \frac{{BI}}{{ID}} = \frac{{IA}}{{IC}} = \frac{3}{2}.\) Vậy \(\frac{{AB}}{{CD}} = \frac{3}{2}.\)
d) Đúng.
Chu vi \(\Delta ICD\) là: \({P_{ICD}} = IC + ID + CD.\)
Chu vi \(\Delta AIB\) là: \({P_{AIB}} = IA + IB + AB.\)
Ta có: \(\frac{{AB}}{{CD}} = \frac{{BI}}{{ID}} = \frac{{IA}}{{IC}} = \frac{{AB + BI + IA}}{{CD + ID + IC}} = \frac{3}{2}.\) Do đó, \({P_{AIB}} = 1,5{P_{ICD}}.\)
Do đó, chu vi \(\Delta AIB\) bằng \(1,5\) lần chu vi tam giác \(\Delta ICD.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải

a) Sai.
Vì \(OA \cdot OC = OB \cdot OD\) nên \(\frac{{OA}}{{OB}} = \frac{{OD}}{{OC}}.\)
b) Đúng.
\(\Delta AOD\) và \(\Delta BOC\) có: \(\frac{{OA}}{{OB}} = \frac{{OD}}{{OC}},\;\,\widehat O\) chung nên \(\Delta AOD \sim \Delta BOC\;\,\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right).\)
c) Sai.
Vì \(\Delta AOD \sim \Delta BOC\) nên \(\widehat {EAC} = \widehat {EBD}.\)
\(\Delta ACE\) và \(\Delta BDE\) có: \(\widehat {EAC} = \widehat {EBD},\;\,\widehat {AEC} = \widehat {BED}\) (hai góc đối đỉnh).
Do đó, \(\Delta ACE \sim \Delta BDE\;\,\left( {{\rm{g}}{\rm{.g}}} \right).\)
d) Đúng.
Vì \(\Delta ACE \sim \Delta BDE\) nên \(\frac{{AE}}{{BE}} = \frac{{CE}}{{DE}}\) suy ra \(AE \cdot ED = CE \cdot EB.\)
Câu 2
Lời giải
a) Đúng.
\(\Delta AMN\) và \(\Delta ACB\) có: \(\widehat {ANM} = \widehat {ABC},\;\,\widehat A\) chung nên \(\Delta AMN \sim \Delta ACB\;\,\left( {{\rm{g}}{\rm{.g}}} \right).\)
b) Sai.
Vì \(\Delta AMN \sim \Delta ACB\) nên \(\frac{{AN}}{{AB}} = \frac{{AM}}{{AC}}.\) Suy ra \(\frac{{AN}}{{AM}} = \frac{{AB}}{{AC}}.\)
c) Đúng.
\(\Delta ANB\) và \(\Delta AMC\) có: \(\frac{{AN}}{{AM}} = \frac{{AB}}{{AC}};\;\,\widehat A\) chung nên \(\Delta ANB \sim \Delta AMC\;\,\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right).\) Suy ra \(\widehat {OBM} = \widehat {OCN}.\)
d) Sai.
\(\Delta MOB\) và \(\Delta CON\) có: \(\widehat {OBM} = \widehat {OCN};\;\,\widehat {MOB} = \widehat {NOC}\) (hai góc đối đỉnh).
Suy ra \(\Delta MOB \sim \Delta NOC\;\,\left( {{\rm{g}}{\rm{.g}}} \right).\)
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

