Cho hình vẽ:
Khi đó:
Quảng cáo
Trả lời:
a) Đúng.
Ta có: \(\widehat {ICD} = 180^\circ - \widehat {DCx} = 180^\circ - 100^\circ = 80^\circ .\) Vậy \(\widehat {ICD} = 80^\circ .\)
b) Sai.
\(\Delta IAB\) và \(\Delta ICD\) có: \(\widehat A = \widehat {ICD}\;\,\left( { = 80^\circ } \right);\;\,\widehat {AIB} = \widehat {CID}\) (hai góc đối đỉnh). Vậy \(\Delta AIB \sim \Delta CID\;\,\left( {{\rm{g}}{\rm{.g}}} \right).\)
c) Sai.
Vì \(\Delta AIB \sim \Delta CID\) nên \(\frac{{AB}}{{CD}} = \frac{{BI}}{{ID}} = \frac{{IA}}{{IC}} = \frac{3}{2}.\) Vậy \(\frac{{AB}}{{CD}} = \frac{3}{2}.\)
d) Đúng.
Chu vi \(\Delta ICD\) là: \({P_{ICD}} = IC + ID + CD.\)
Chu vi \(\Delta AIB\) là: \({P_{AIB}} = IA + IB + AB.\)
Ta có: \(\frac{{AB}}{{CD}} = \frac{{BI}}{{ID}} = \frac{{IA}}{{IC}} = \frac{{AB + BI + IA}}{{CD + ID + IC}} = \frac{3}{2}.\) Do đó, \({P_{AIB}} = 1,5{P_{ICD}}.\)
Do đó, chu vi \(\Delta AIB\) bằng \(1,5\) lần chu vi tam giác \(\Delta ICD.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải

a) Sai.
Vì \(OA \cdot OC = OB \cdot OD\) nên \(\frac{{OA}}{{OB}} = \frac{{OD}}{{OC}}.\)
b) Đúng.
\(\Delta AOD\) và \(\Delta BOC\) có: \(\frac{{OA}}{{OB}} = \frac{{OD}}{{OC}},\;\,\widehat O\) chung nên \(\Delta AOD \sim \Delta BOC\;\,\left( {{\rm{c}}{\rm{.g}}{\rm{.c}}} \right).\)
c) Sai.
Vì \(\Delta AOD \sim \Delta BOC\) nên \(\widehat {EAC} = \widehat {EBD}.\)
\(\Delta ACE\) và \(\Delta BDE\) có: \(\widehat {EAC} = \widehat {EBD},\;\,\widehat {AEC} = \widehat {BED}\) (hai góc đối đỉnh).
Do đó, \(\Delta ACE \sim \Delta BDE\;\,\left( {{\rm{g}}{\rm{.g}}} \right).\)
d) Đúng.
Vì \(\Delta ACE \sim \Delta BDE\) nên \(\frac{{AE}}{{BE}} = \frac{{CE}}{{DE}}\) suy ra \(AE \cdot ED = CE \cdot EB.\)
Câu 2
Lời giải

a) Sai.
Vì \(\frac{4}{8} = \frac{6}{{12}} = \frac{8}{{16}}\;\,\left( { = \frac{1}{2}} \right)\) nên \(\frac{{AB}}{{BD}} = \frac{{AD}}{{BC}} = \frac{{BD}}{{DC}}.\)
b) Đúng.
\(\Delta ABD\) và \(\Delta BDC\) có: \(\frac{{AB}}{{BD}} = \frac{{AD}}{{BC}} = \frac{{BD}}{{DC}}\;\,\left( {{\rm{cmt}}} \right)\) nên \(\Delta ABD \sim \Delta BDC\;\,\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right).\)
Vậy \(\Delta ABD \sim \Delta BDC\) với tỉ số đồng dạng là \(\frac{{AB}}{{BD}} = 0,5.\)
c) Sai.
Vì \[\Delta ABD \sim \Delta BDC\;\,\left( {{\rm{cmt}}} \right)\] nên \(\widehat {ABD} = \widehat {BDC}\) (hai góc tương ứng).
d) Sai.
Tứ giác \(ABCD\) có: \(\widehat {ABD} = \widehat {BDC},\) mà hai góc này ở vị trí so le trong nên \(AB\;{\rm{//}}\;CD.\)
Vậy tứ giác \(ABCD\) là hình thang có \(DC\) là đáy lớn.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


