Câu hỏi:

13/11/2025 13 Lưu

 Trong các phát biểu sau, phát biểu nào đúng?

A. Hai tam giác đồng dạng thì bằng nhau.             
B. Hai tam giác bằng nhau thì không đồng dạng.
C. Hai tam giác bằng nhau thì đồng dạng.                      
D. Hai tam giác vuông luôn đồng dạng với nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Hai tam giác bằng nhau thì đồng dạng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 9

Áp dụng định lí Pythagore vào tam giác \(ABC\), ta có:

\(A{B^2} + A{C^2} = B{C^2}\) hay \({6^2} + {6^2} = B{C^2}\) nên \(B{C^2} = 72\), suy ra \(BC = \sqrt {72} \).

Áp dụng định lí Pythagore vào tam giác \(BCD\), ta có:

\(B{C^2} + C{D^2} = B{D^2}\) hay \({\left( {\sqrt {72} } \right)^2} + {3^2} = {x^2}\) nên \({x^2} = 81\), suy ra \(x = 9\).

Vậy \(x = 9\).

Lời giải

Đáp án: 52

Media VietJack

Từ \(C\) kẻ \(CH \bot AB\) tại \(H\).

Xét tứ giác \(ADCH\)\(\widehat {ADC} = \widehat {DAH} = \widehat {AHC} = 90^\circ \) nên \(ADCH\) là hình chữ nhật.

Suy ra \(AD = CH = 8{\rm{ cm}}\); \(DC = AH = 14{\rm{ cm}}\).

Lại có, \(AH + HB = AB\), suy ra \(BH = AB - AH = 20 - 14 = 6{\rm{ }}\left( {{\rm{cm}}} \right)\).

Áp dụng định lí Pythagore vào tam giác \(\Delta HCB\), có:

\(H{B^2} + H{C^2} = B{C^2}\)

\({8^2} + {6^2} = B{C^2}\)

\(100 = B{C^2}\) suy ra \(BC = 10{\rm{ cm}}\).

Vậy chu vi tứ giác \(ABCD\)\(8 + 14 + 10 + 20 = 52{\rm{ cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[9{\rm{\;cm}},{\rm{ }}12{\rm{\;cm}},{\rm{ }}15{\rm{\;cm}}.\]
B. \[7{\rm{\;cm}},{\rm{ }}8{\rm{\;cm}},{\rm{ }}10{\rm{\;cm}}.\]
C. \[6{\rm{\;dm}},{\rm{ }}7{\rm{\;dm}},{\rm{ }}9{\rm{\;dm}}.\]
D. \[10{\rm{\;m}},{\rm{ }}13{\rm{\;m}},{\rm{ }}15{\rm{\;m}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\Delta AMN \sim \Delta ABC.\)              
B. \(\Delta ABC \sim \Delta MNC.\)
C. \(\Delta NMC \sim \Delta ABC.\)       
D. \(\Delta CAB \sim \Delta CMN.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP