Cho \(\Delta ABC \sim \Delta DEF\) với tỉ số bằng \(\frac{1}{2}\) và \[\widehat {A\,} = 80^\circ ;\] \[\widehat {B\,} = 70^\circ ;\] \[\widehat {F\,} = 30^\circ ;\] \[BC = 6\,\,{\rm{cm}}.\] Khẳng định nào sau đây là đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: D
Vì \(\Delta ABC \sim \Delta DEF\) nên:
⦁ \(\frac{{BC}}{{EF}} = \frac{1}{2},\) do đó \(EF = 2BC = 2 \cdot 6 = 12{\rm{\;cm}}.\)
⦁ \(\widehat {C\,} = \widehat {F\,} = 30^\circ ;\) \(\widehat {D\,} = \widehat {A\,} = 80^\circ \) và \(\widehat {E\,} = \widehat {B\,} = 70^\circ .\)
Vậy ta chọn phương án D.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: 9
Áp dụng định lí Pythagore vào tam giác \(ABC\), ta có:
\(A{B^2} + A{C^2} = B{C^2}\) hay \({6^2} + {6^2} = B{C^2}\) nên \(B{C^2} = 72\), suy ra \(BC = \sqrt {72} \).
Áp dụng định lí Pythagore vào tam giác \(BCD\), ta có:
\(B{C^2} + C{D^2} = B{D^2}\) hay \({\left( {\sqrt {72} } \right)^2} + {3^2} = {x^2}\) nên \({x^2} = 81\), suy ra \(x = 9\).
Vậy \(x = 9\).
Lời giải
Đáp án: 52

Từ \(C\) kẻ \(CH \bot AB\) tại \(H\).
Xét tứ giác \(ADCH\) có \(\widehat {ADC} = \widehat {DAH} = \widehat {AHC} = 90^\circ \) nên \(ADCH\) là hình chữ nhật.
Suy ra \(AD = CH = 8{\rm{ cm}}\); \(DC = AH = 14{\rm{ cm}}\).
Lại có, \(AH + HB = AB\), suy ra \(BH = AB - AH = 20 - 14 = 6{\rm{ }}\left( {{\rm{cm}}} \right)\).
Áp dụng định lí Pythagore vào tam giác \(\Delta HCB\), có:
\(H{B^2} + H{C^2} = B{C^2}\)
\({8^2} + {6^2} = B{C^2}\)
\(100 = B{C^2}\) suy ra \(BC = 10{\rm{ cm}}\).
Vậy chu vi tứ giác \(ABCD\) là \(8 + 14 + 10 + 20 = 52{\rm{ cm}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



