Câu hỏi:

13/11/2025 35 Lưu

Cho \(\Delta ABC \sim \Delta MNP\) theo tỉ số \(\frac{2}{3},\) biết chu vi của \(\Delta ABC\) bằng \[40{\rm{\;cm}}.\] Khi đó chu vi của \(\Delta MNP\) bằng

A. \(20{\rm{\;cm}}.\) 
B. \(30{\rm{\;cm}}.\) 
C. \(45{\rm{\;cm}}.\)  
D. \[60{\rm{\;cm}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Media VietJack

\(\Delta ABC \sim \Delta MNP\) theo tỉ số \(\frac{2}{3},\) nên ta có \(\frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}} = \frac{2}{3}.\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{{AB}}{{MN}} = \frac{{BC}}{{NP}} = \frac{{CA}}{{PM}} = \frac{{AB + BC + CA}}{{MN + NP + PM}} = \frac{2}{3}.\)

Hay \[\frac{{Chu{\rm{ }}vi{\rm{ }}\Delta ABC}}{{Chu{\rm{ }}vi{\rm{ }}\Delta MNP}} = \frac{2}{3},\] nên \[\frac{{40}}{{Chu{\rm{ }}vi{\rm{ }}\Delta MNP}} = \frac{2}{3}\]

Do đó chu vi tam giác \(MNP\) là: \(40 \cdot \frac{3}{2} = 60{\rm{\;(cm)}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 9

Áp dụng định lí Pythagore vào tam giác \(ABC\), ta có:

\(A{B^2} + A{C^2} = B{C^2}\) hay \({6^2} + {6^2} = B{C^2}\) nên \(B{C^2} = 72\), suy ra \(BC = \sqrt {72} \).

Áp dụng định lí Pythagore vào tam giác \(BCD\), ta có:

\(B{C^2} + C{D^2} = B{D^2}\) hay \({\left( {\sqrt {72} } \right)^2} + {3^2} = {x^2}\) nên \({x^2} = 81\), suy ra \(x = 9\).

Vậy \(x = 9\).

Lời giải

Đáp án: 38,1

Áp dụng định lí Pythagore vào tam giác \(ABH\), ta có:

\(A{H^2} + B{H^2} = A{B^2}\)

\(A{H^2} + {4^2} = {8^2}\)

\(A{H^2} = 48\) suy ra \(AH = \sqrt {48} \).

Áp dụng định lí Pythagore vào tam giác \(AHC\), có:

\(A{H^2} + C{H^2} = A{C^2}\)

\(48 + C{H^2} = {13^2}\)

\(C{H^2} = 121\) hay \(CH = 11\).

Do đó, diện tích tam giác \(AHC\)\(\frac{1}{2}.11.\sqrt {48} = \frac{{11\sqrt {48} }}{2} \approx 38,1\).

Vậy diện tích tam giác \(AHC\)\(38,1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(9{\rm{\;cm}}.\) 
B. \(10{\rm{\;cm}}.\)
C. \(12{\rm{\;cm}}.\) 
D. \[\sqrt {194} {\rm{\;cm}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[9{\rm{\;cm}},{\rm{ }}12{\rm{\;cm}},{\rm{ }}15{\rm{\;cm}}.\]
B. \[7{\rm{\;cm}},{\rm{ }}8{\rm{\;cm}},{\rm{ }}10{\rm{\;cm}}.\]
C. \[6{\rm{\;dm}},{\rm{ }}7{\rm{\;dm}},{\rm{ }}9{\rm{\;dm}}.\]
D. \[10{\rm{\;m}},{\rm{ }}13{\rm{\;m}},{\rm{ }}15{\rm{\;m}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\Delta AMN \sim \Delta ABC.\)              
B. \(\Delta ABC \sim \Delta MNC.\)
C. \(\Delta NMC \sim \Delta ABC.\)       
D. \(\Delta CAB \sim \Delta CMN.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP