Câu hỏi:

13/11/2025 11 Lưu

Cho tam giác \(ABC\). Trên cạnh \(AB,AC\) lần lượt lấy các điểm \(E,D\) sao cho \(AC = 3AE\)\(AD = \frac{1}{3}AB\). Gọi \(I\) là giao điểm của \(BD\)\(EC\). Biết rằng .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

a) Đúng.

Theo đề, ta có  nên \(\widehat {ADB} = \widehat {AEC}\) (hai góc tương ứng).

Do đó ý a) đúng.

b) Đúng.

Ta có: \(AC = 3AE\) hay \(\frac{{AE}}{{AC}} = \frac{1}{3}\); \(AD = \frac{1}{3}AB\) hay \(\frac{{AD}}{{AB}} = \frac{1}{3}\).

Suy ra \(\frac{{AE}}{{AC}} = \frac{{AD}}{{AB}} = \frac{1}{3}\). Do đó, ý b) đúng.

c) Sai.

Xét \(\Delta ADE\)\(\Delta ABC\), có:

\(\frac{{AE}}{{AC}} = \frac{{AD}}{{AB}} = \frac{1}{3}\) (cmt)

\(\widehat A\) chung (gt)

Do đó, \(\Delta ADE \sim \Delta ABC\) (c.g.c)

Do đó, ý c) sai.

d) Đúng.

\(\Delta ABD \sim \Delta ACE\) nên \(\widehat {ABD} = \widehat {ACE}\) (2 góc tương ứng) (1)

Lại có, \(\widehat {EIB} = \widehat {DIC}\) (hai góc đối đỉnh) (2)

Từ (1) và (2) suy ra (g.g)

Suy ra \(\frac{{IE}}{{ID}} = \frac{{IB}}{{IC}}\) suy ra \(IE.IC = IB.ID\).

Do đó, ý d) đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: 9

Áp dụng định lí Pythagore vào tam giác \(ABC\), ta có:

\(A{B^2} + A{C^2} = B{C^2}\) hay \({6^2} + {6^2} = B{C^2}\) nên \(B{C^2} = 72\), suy ra \(BC = \sqrt {72} \).

Áp dụng định lí Pythagore vào tam giác \(BCD\), ta có:

\(B{C^2} + C{D^2} = B{D^2}\) hay \({\left( {\sqrt {72} } \right)^2} + {3^2} = {x^2}\) nên \({x^2} = 81\), suy ra \(x = 9\).

Vậy \(x = 9\).

Lời giải

Đáp án: 52

Media VietJack

Từ \(C\) kẻ \(CH \bot AB\) tại \(H\).

Xét tứ giác \(ADCH\)\(\widehat {ADC} = \widehat {DAH} = \widehat {AHC} = 90^\circ \) nên \(ADCH\) là hình chữ nhật.

Suy ra \(AD = CH = 8{\rm{ cm}}\); \(DC = AH = 14{\rm{ cm}}\).

Lại có, \(AH + HB = AB\), suy ra \(BH = AB - AH = 20 - 14 = 6{\rm{ }}\left( {{\rm{cm}}} \right)\).

Áp dụng định lí Pythagore vào tam giác \(\Delta HCB\), có:

\(H{B^2} + H{C^2} = B{C^2}\)

\({8^2} + {6^2} = B{C^2}\)

\(100 = B{C^2}\) suy ra \(BC = 10{\rm{ cm}}\).

Vậy chu vi tứ giác \(ABCD\)\(8 + 14 + 10 + 20 = 52{\rm{ cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[9{\rm{\;cm}},{\rm{ }}12{\rm{\;cm}},{\rm{ }}15{\rm{\;cm}}.\]
B. \[7{\rm{\;cm}},{\rm{ }}8{\rm{\;cm}},{\rm{ }}10{\rm{\;cm}}.\]
C. \[6{\rm{\;dm}},{\rm{ }}7{\rm{\;dm}},{\rm{ }}9{\rm{\;dm}}.\]
D. \[10{\rm{\;m}},{\rm{ }}13{\rm{\;m}},{\rm{ }}15{\rm{\;m}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\Delta AMN \sim \Delta ABC.\)              
B. \(\Delta ABC \sim \Delta MNC.\)
C. \(\Delta NMC \sim \Delta ABC.\)       
D. \(\Delta CAB \sim \Delta CMN.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP