Cho tam giác \[ABC\] vuông tại \(A,\) kẻ \(AH \bot BC\) \(\left( {H \in BC} \right).\) Biết \(BC = 20{\rm{\;cm}}\) và \(AC = 12{\rm{\;cm}},\) độ dài cạnh \(BH\) bằng bao nhiêu? (Đơn vị: cm, kết quả ghi dưới dạng số thập phân)
Quảng cáo
Trả lời:
Đáp án: 12,8

Xét \(\Delta ABC\) (vuông tại \(A)\) và \(\Delta HBA\) (vuông tại \(H)\) có \(\widehat {B\,}\) là góc chung nên \[\Delta ABC \sim \Delta HBA.\]
Suy ra \(\frac{{AB}}{{HB}} = \frac{{BC}}{{BA}}\) (tỉ số cạnh tương ứng). Do đó \(BH = \frac{{A{B^2}}}{{BC}}.\)
Mà \(\Delta ABC\) vuông tại \(A,\) theo định lí Pythagore ta có:
\(B{C^2} = A{B^2} + A{C^2}\) nên \(A{B^2} = B{C^2} - A{C^2} = {20^2} - {12^2} = 256.\)
Khi đó \(BH = \frac{{256}}{{20}} = 12,8{\rm{\;cm}}.\)
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Xét \(\Delta ABC\) vuông tại \(B,\) theo định lí Pythagore ta có:
\(A{C^2} = A{B^2} + B{C^2}\) nên \(B{C^2} = A{C^2} - A{B^2} = {13^2} - {5^2} = 144.\)
Do đó \(BC = 12{\rm{\;cm}}.\)
Lời giải
Đáp án: 9
Áp dụng định lí Pythagore vào tam giác \(ABC\), ta có:
\(A{B^2} + A{C^2} = B{C^2}\) hay \({6^2} + {6^2} = B{C^2}\) nên \(B{C^2} = 72\), suy ra \(BC = \sqrt {72} \).
Áp dụng định lí Pythagore vào tam giác \(BCD\), ta có:
\(B{C^2} + C{D^2} = B{D^2}\) hay \({\left( {\sqrt {72} } \right)^2} + {3^2} = {x^2}\) nên \({x^2} = 81\), suy ra \(x = 9\).
Vậy \(x = 9\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


