Câu hỏi:

15/11/2025 12 Lưu

Cho tam giác \(ABC\)\(AB = 2,\,\,AC = 2\sqrt 2 ,\,\cos \left( {B + C} \right) = - \frac{{\sqrt 2 }}{2}\). Độ dài cạnh \(BC\)

A. 2;                                
B. 4;                            
C. 12;                                   
D. 20.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Ta có: \(\widehat A + \widehat B + \widehat C = 180^\circ \), suy ra \(\cos A = - \cos \left( {B + C} \right) = - \left( { - \frac{{\sqrt 2 }}{2}} \right) = \frac{{\sqrt 2 }}{2}\) (hai góc bù nhau).

Theo định lí côsin trong tam giác \(ABC\), ta có:

\(B{C^2} = A{B^2} + A{C^2} - 2AB \cdot AC \cdot \cos A = {2^2} + {\left( {2\sqrt 2 } \right)^2} - 2 \cdot 2 \cdot 2\sqrt 2 .\frac{{\sqrt 2 }}{2} = 4\).

Suy ra \(BC = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Xét tam giác \[ABC\], ta có:

\[\widehat A = 180^\circ - \left( {\widehat B + \widehat C} \right) = 180^\circ - \left( {105^\circ + 30^\circ } \right) = 45^\circ \].

Áp dụng định lý sin, ta có: \[\frac{{AB}}{{\sin 30^\circ }} = \frac{{AC}}{{\sin 105^\circ }} \Leftrightarrow \frac{{AB}}{{\sin 30^\circ }} = \frac{{22}}{{\sin 105^\circ }} \Rightarrow AB \approx 11,4\]

Vậy khoảng cách từ \[A\] đến \[B\]\[11,4\]m.

b) Diện tích của khu vườn: \[{S_{ABCD}} = {S_{ABC}} + {S_{ADC}}\].

Xét tam giác \[ABC\] có: \[{S_{ABC}} = \frac{1}{2}AB.AC.\sin \widehat A \approx \frac{1}{2}.11,4.22.\sin 45^\circ \approx 88,67\]

Xét tam giác \[ADC\]có: \[p = \frac{{AD + CD + AC}}{2} = \frac{{20 + 22 + 6}}{2} = 24\]

\[\begin{array}{l}{S_{ADC}} = \sqrt {p\left( {p - AD} \right)\left( {p - CD} \right)\left( {p - AC} \right)} \\ \Rightarrow {S_{ADC}} = \sqrt {24.\left( {24 - 20} \right)\left( {24 - 22} \right)\left( {24 - 6} \right)} \approx 58,79\end{array}\]

\[ \Rightarrow {S_{ABCD}} \approx 88,67 + 58,79 \approx 147,5\].

Vậy diện tích khu vườn đó là \(147,5\,\,{m^2}\).

Câu 2

A. \(\alpha \)\(\beta \) bù nhau;                              
B. \(\alpha \)\(\beta \) phụ nhau;                         
C. \(\alpha \)\(\beta \) bằng nhau;                   
D. \(\alpha \)\(\beta \) không có mối liên hệ.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Ta có \(\tan \alpha = \cot \beta \) khi \(\alpha \)\(\beta \) phụ nhau.

Câu 4

A. Hình 1;                   

B. Hình 2;                    
C. Hình 3;                                 
D. Hình 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({a^2} = {b^2} + {c^2} - 2bc \cdot \cos A\);     
B. \({a^2} = {b^2} + {c^2}\);                         
C. \({b^2} = {c^2} + {a^2} - 2ca \cdot \cos B\);                                  
D. \({c^2} = {b^2} + {a^2} - 2ba \cdot \cos C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[4\];                        
B. \[5\];                        
C. \[6\];                             
D. \[8\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({x^2} + 3{y^2} \ge 9\);                           
B. \({3^3}x + {4^2}y > 25\);            
C. \(\frac{2}{x} + \frac{3}{y} < 5\);                               
D.\( - xy + {3^2}y < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP