Câu hỏi:

16/11/2025 32 Lưu

Mệnh đề nào dưới đây là đúng?

A. \(\left( {0;\,\,3} \right] \subset \left( { - 1;\,3} \right)\);                                                                   
B. \(\left( { - 1;2} \right) \subset \mathbb{Q}\);                
C. \(\left( { - 1;\,\,4} \right) \cup \left[ {5;\,\,6} \right] \subset \mathbb{Z}\);                                                
D. \(\left\{ {\frac{1}{2}} \right\} \subset \mathbb{Q}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

+) Ta có: \(3 \in \left( {0;\,\,3} \right]\) nhưng \(3 \notin \left( { - 1;\,3} \right)\)nên \(\left( {0;\,\,3} \right] \not\subset \left( { - 1;\,3} \right)\). Do đó A sai.

+) Ta có: \(\sqrt 2  \in \left( { - 1;2} \right)\) mà \(\sqrt 2  \notin \mathbb{Q}\) nên \(\left( { - 1;2} \right) \not\subset \mathbb{Q}\). Do đó B sai.

+) Ta có: \(\frac{3}{4} \in \left( { - 1;\,\,4} \right) \cup \left[ {5;\,\,6} \right]\) mà \(\frac{3}{4} \notin \mathbb{Z}\). Do đó C sai.

+) Ta có: \(\frac{1}{2} \in \mathbb{Q}\) nên \(\left\{ {\frac{1}{2}} \right\} \subset \mathbb{Q}\). Do đó D đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Xét tam giác \(AHB\) vuông tại \(H\), có:

\(A{B^2} = A{H^2} + H{B^2} = {1^2} + {6^2} = 37\)

\( \Leftrightarrow AB = \sqrt {37} \,\,cm\)

\(\tan ABH = \frac{{AH}}{{BH}} = \frac{1}{6} \Rightarrow \widehat {ABH} \approx 9,5^\circ \).

\( \Rightarrow \widehat {ABC} = 90^\circ - 9,5^\circ = 80,5^\circ \)

\( \Rightarrow \widehat {ACB} = 180^\circ - 80,5^\circ - 44^\circ = 55,5^\circ \)

Áp dụng định lí sin trong tam giác \(ABC\), có:

\(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{BC}}{{\sin \widehat {BAC}}} \Leftrightarrow BC = \frac{{AB.\sin \widehat {BAC}}}{{\sin \widehat {ACB}}} = \frac{{\sqrt {37} .\sin 44^\circ }}{{\sin 55,5^\circ }} \approx 5,1\,\,\left( m \right).\)

Vậy chiều cao của cây đèn đường khoảng \(5,1\,\,m\).

Câu 2

A. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương;     
B. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng hướng; 
C. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) có độ dài bằng nhau;        
D. Hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn ngược hướng.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Với vectơ \(\overrightarrow a \) khác \(\overrightarrow 0 \) và một số thực \(k \ne 0\), ta có hai vectơ \(\overrightarrow a ,\,\,k\overrightarrow a \) luôn cùng phương với nhau.

Câu 3

A. \(\overrightarrow {OA} + \overrightarrow {OB} - \overrightarrow {EO} = \overrightarrow 0 \);                                 
B. \(\overrightarrow {BC} - \overrightarrow {FE} = \overrightarrow {AD} \); 
C. \(\overrightarrow {OA} - \overrightarrow {OB} = \overrightarrow {EB} - \overrightarrow {OC} \); 
D. \(\overrightarrow {AB} + \overrightarrow {CD} - \overrightarrow {FE} = \overrightarrow 0 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(1\);                        
B. \(2\);                        
C. \(3\);                                     
D. \(4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(a > 0,\,\,b < 0,\,\,c > 0\);                                                                           
B. \(a < 0,\,\,b > 0,\,\,c > 0\);
C. \(a < 0,\,\,b < 0,\,\,c > 0\);                                                                           
D. \(a < 0,\,\,b > 0,\,\,c < 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({x_0} + {y_0} \ge 0\);                              
B. \({x_0} < 0\);                               
C. \({y_0} \ge - 1\);    
D. \({x_0} - {y_0} > - 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP