Tam giác \(ABC\) vuông cân tại \(A\) nội tiếp trong đường tròn tâm \(O\) bán kính \(R\) và có bán kính đường tròn nội tiếp tam giác là \(r\). Khi đó tỉ số \(\frac{R}{r}\) là
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Giả sử ta có \(AB = AC = a\), do tam giác \(ABC\) vuông cân tại \(A\) nên \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \) và bán kính đường tròn ngoại tiếp tam giác là \(R = \frac{{BC}}{2} = \frac{{a\sqrt 2 }}{2}\).
Nửa chu vi tam giác \(ABC\) là \(p = \frac{{AB + AC + BC}}{2} = \frac{{a + a + a\sqrt 2 }}{2} = \frac{{\left( {2 + \sqrt 2 } \right)a}}{2}\).
Diện tích tam giác \(ABC\) là \(S = \frac{1}{2}AB \cdot AC = \frac{1}{2} \cdot a \cdot a = \frac{{{a^2}}}{2}\).
Lại có \(S = pr\) với \(r\) là bán kính đường tròn nội tiếp tam giác \(ABC\).
Suy ra \(r = \frac{S}{p} = \frac{{\frac{{{a^2}}}{2}}}{{\frac{{\left( {2 + \sqrt 2 } \right)a}}{2}}} = \frac{a}{{2 + \sqrt 2 }}\). Vậy \(\frac{R}{r} = \frac{{\frac{{a\sqrt 2 }}{2}}}{{\frac{a}{{2 + \sqrt 2 }}}} = 1 + \sqrt 2 \).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Vì Parabol có bề lõm quay lên trên nên \(a > 0\).
Suy ra đáp án C, D sai.
Xét đáp án A: Ta gọi I là đỉnh của Parabol vậy
\({x_I} = - \frac{b}{{2a}} = - \frac{{\left( { - 4} \right)}}{{2.1}} = 2;\,{y_I} = {2^2} - 4.2 - 1 = - 5\) Vậy đỉnh \(I(2; - 5)\)
Suy ra đáp án A sai.
Xét đáp án B: Ta gọi I là đỉnh của Parabol vậy
Vậy đỉnh \(I(2; - 1)\)
Trục đối xứng \(x = 2\).
Giao điểm của đồ thị với trục \(Oy\) là \(A\left( {0;3} \right)\).
Parabol cắt trục hoành tại hai điểm có hoành độ là ngiệm của phương trình \({x^2} - 4x + 3 = 0\) tức là \(x = 1\) và \(x = 3\).
Suy ra đáp án B đúng.
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Phần gạch chéo trong hình tương ứng với tập \(\left( {A \cap B} \right)\backslash C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



