(1,0 điểm) Anh An làm nghề thợ mộc chuyên đóng bàn và ghế học sinh. Mỗi cái bàn anh bán lãi được \(150\) nghìn đồng, mỗi cái ghế bán lãi được \(100\) nghìn đồng. Mỗi tuần anh làm việc không quá \(60\) giờ. Anh đóng một cái bàn tốn hết \(6\) giờ và đóng một cái ghế tốn hết \(3\) giờ. Để có lãi, anh An phải làm số ghế nhiều hơn số bàn ít nhất \(2\) lần. Hỏi một tuần anh An phải đóng bao nhiêu cái bàn, bao nhiêu cái ghế để số tiền lãi thu về lớn nhất?
(1,0 điểm) Anh An làm nghề thợ mộc chuyên đóng bàn và ghế học sinh. Mỗi cái bàn anh bán lãi được \(150\) nghìn đồng, mỗi cái ghế bán lãi được \(100\) nghìn đồng. Mỗi tuần anh làm việc không quá \(60\) giờ. Anh đóng một cái bàn tốn hết \(6\) giờ và đóng một cái ghế tốn hết \(3\) giờ. Để có lãi, anh An phải làm số ghế nhiều hơn số bàn ít nhất \(2\) lần. Hỏi một tuần anh An phải đóng bao nhiêu cái bàn, bao nhiêu cái ghế để số tiền lãi thu về lớn nhất?
Câu hỏi trong đề: Bộ 10 đề thi Giữa kì 1 Toán 10 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Gọi \(x\) là số bàn và \(y\) là số ghế anh An đóng được trong một tuần \(\left( {x;y\,\, \ge 0} \right)\).
Số giờ đề đóng \(x\) chiếc bàn và \(y\) chiếc ghế là: \(6x + 3y\) (giờ).
Mỗi tuần anh làm việc không quá \(60\) giờ nên ta có bất phương trình: \(6x + 3y \le 60\) (1).
Vì số ghế nhiều hơn số bàn ít nhất \(2\) lần nên ta có: \(y \ge 2x\)(2)
Từ (1) và (2) ta có hệ bất phương trình:
\(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\6x + 3y \le 60\\y \ge 2x\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + y \le 20\\ - 2x + y \ge 0\end{array} \right.\)
Miền nghiệm của hệ bất phương trình là miền trong của tam giác \(OAB\) với \(O\left( {0;\,\,0} \right),\,A\left( {5;\,\,10} \right),\,\,B\left( {0;20} \right)\).

Số tiền lãi thu được: \(F\left( {x;\,\,y} \right) = 150x + 100y\) (nghìn đồng).
Ta có:
Tại \(O\left( {0;\,\,0} \right)\) có \(F\left( {0;\,\,0} \right) = 150.0 + 100.0 = 0\);
Tại \(A\left( {5;\,\,10} \right)\) có \(F\left( {5;\,\,10} \right) = 150.5 + 100.10 = 1\,\,750\);
Tại \(B\left( {0;20} \right)\) có \(F\left( {0;\,\,20} \right) = 150.0 + 100.20 = 2\,\,000\).
Vậy một tuần anh An phải đóng được \(0\) chiếc bàn và \(20\)chiếc ghế để tiền lãi thu được là lớn nhất.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Phần gạch chéo trong hình tương ứng với tập \(\left( {A \cap B} \right)\backslash C\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Vì Parabol có bề lõm quay lên trên nên \(a > 0\).
Suy ra đáp án C, D sai.
Xét đáp án A: Ta gọi I là đỉnh của Parabol vậy
\({x_I} = - \frac{b}{{2a}} = - \frac{{\left( { - 4} \right)}}{{2.1}} = 2;\,{y_I} = {2^2} - 4.2 - 1 = - 5\) Vậy đỉnh \(I(2; - 5)\)
Suy ra đáp án A sai.
Xét đáp án B: Ta gọi I là đỉnh của Parabol vậy
Vậy đỉnh \(I(2; - 1)\)
Trục đối xứng \(x = 2\).
Giao điểm của đồ thị với trục \(Oy\) là \(A\left( {0;3} \right)\).
Parabol cắt trục hoành tại hai điểm có hoành độ là ngiệm của phương trình \({x^2} - 4x + 3 = 0\) tức là \(x = 1\) và \(x = 3\).
Suy ra đáp án B đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



