Một sinh viên sau khi ra trường và xin vào làm cho một trung tâm với mức lương khởi điểm là 120 triệu đồng một năm. Cứ sau mỗi năm, trung tâm trả thêm cho sinh viên 24 triệu đồng. Gọi \({u_n}\) là số tiền lương mà sinh viên đó nhận được ở năm thứ \(n\).
Số tiền lương sinh viên nhận được ở năm thứ hai là 144 triệu đồng.
Số tiền lương sinh viên nhận được ở năm thứ 10 là 330 triệu đồng.
Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} = 120\) và công sai d = 20.
Giả sử mỗi năm bạn sinh viên chi tiêu tiết kiệm hết 70 triệu đồng. Vậy sau ít nhất 10 năm thì sinh viên đó mua được căn chung cư 2 tỉ đồng.
Quảng cáo
Trả lời:
a) Ta thấy số tiền lương năm sau hơn năm trước 24 triệu đồng nên số tiền lương hằng năm \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} = 120\) và công sai \(d = 24\).
Do đó \({u_n} = {u_1} + \left( {n - 1} \right)d = 120 + \left( {n - 1} \right) \cdot 24 = 24n + 96\).
Số tiền lương sinh viên nhận được ở năm thứ hai là \({u_2} = 144\).
b) \({u_{10}} = 24 \cdot 10 + 96 = 336\).
c) Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} = 120\) và công sai d = 24.
d) Tổng số tiền bạn sinh viên tiết kiệm được sau n năm là:
\(S = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] - 70n = \frac{n}{2}\left[ {2 \cdot 120 + \left( {n - 1} \right) \cdot 24} \right] - 70n\) \( = 12{n^2} + 38n\).
Ta có \(S \ge 2000 \Leftrightarrow 12{n^2} + 38n - 2000 \ge 0 \Leftrightarrow \left[ \begin{array}{l}n \ge 11,42\\n \le - 14,59\end{array} \right.\).
Do đó ít nhất sau 12 năm thì sinh viên đó có thể mua được căn chung cư 2 tỉ đồng.
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(\left\{ \begin{array}{l}{u_2} - {u_3} + {u_5} = 10\\{u_4} + {u_6} = 26\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d = 10\\2{u_1} + 8d = 26\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = 3\end{array} \right.\).
Ta có \({u_n} = {u_1} + \left( {n - 1} \right)d = 1 + \left( {n - 1} \right) \cdot 3 = 3n - 2\).
b) Ta có \(3n - 2 = 37 \Leftrightarrow n = 13\).
Số 37 thuộc cấp số cộng và số 37 là số hạng thứ 13.
c) Ta có \({u_4} = {u_1} + 3d = 10;{u_7} = {u_1} + 6d = 19;{u_{10}} = {u_1} + 9d = 28\); …; \({u_{2011}} = {u_1} + 2010d = 6031\).
Khi đó \(S = {u_1} + {u_4} + {u_7} + ... + {u_{2011}} = 1 + 10 + 19 + 28 + ... + 6031 = \frac{{\left( {1 + 6031} \right).671}}{2} = 2023736\).
Câu 2
\({u_2} = 630\).
Giá tiền của chiếc ô tô qua các năm lập thành một cấp số cộng với công sai \(d = 50\).
Giá của chiếc ô tô sau 3 năm sử dụng lớn hơn 500 triệu đồng.
Sau ít nhất 8 năm sử dụng thì giá của chiếc ô tô nhỏ hơn một nửa giá ban đầu của nó.
Lời giải
a) Ta có \({u_2} = 680 - 50 = 630\).
b) Giá tiền của chiếc ô tô qua các năm lập thành một cấp số cộng với công sai \(d = - 50\).
c) Giá trị của chiếc ô tô sau 3 năm sử dụng là \({u_4} = {u_1} + 3d = 680 - 3 \cdot 50 = 530\) triệu đồng.
d) Ta có \({u_n} = {u_1} + \left( {n - 1} \right)d = 680 - 50\left( {n - 1} \right) = - 50n + 730\).
Theo đề ta có \( - 50n + 730 < 340\)\( \Leftrightarrow n > 7,8\).
Vậy sau ít nhất 8 năm sử dụng thì giá của chiếc ô tô nhỏ hơn một nửa giá ban đầu của nó.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Câu 3
Số hạng thứ hai của cấp số cộng là \({u_2} = 7\).
Công sai của cấp số cộng \(d = 5\).
Số hạng tổng quát của cấp số cộng đã cho \({u_n} = 5n + 3\).
Tổng các số hạng từ số hạng thứ 11 đến số hạng thứ 100 của cấp số cộng đã cho bằng 25705.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.