Câu hỏi:

16/11/2025 16 Lưu

Cho một cấp số nhân \(\left( {{u_n}} \right)\) có công bội \(q\) thỏa mãn \(\left\{ \begin{array}{l}{u_5} + {u_2} = 36\\{u_6} - {u_4} = 48\end{array} \right.\). Tính \({u_1} + 2024q\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\left\{ \begin{array}{l}{u_5} + {u_2} = 36\\{u_6} - {u_4} = 48\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^4} + {u_1}q = 36\\{u_1}{q^5} - {u_1}{q^3} = 48\end{array} \right.\)\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {{q^3} + 1} \right) = 36\\{u_1}{q^3}\left( {{q^2} - 1} \right) = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\{u_1}{q^3}\left( {q - 1} \right)\left( {q + 1} \right) = 48\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\\frac{{36{q^2}\left( {q - 1} \right)}}{{{q^2} - q + 1}} = 48\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^2}\left( {q - 1} \right) = 4\left( {{q^2} - q + 1} \right)\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}q\left( {q + 1} \right)\left( {{q^2} - q + 1} \right) = 36\\3{q^3} - 7{q^2} + 4q - 4 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} \cdot 2\left( {2 + 1} \right)\left( {{2^2} - 2 + 1} \right) = 36\\q = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\q = 2\end{array} \right.\].

Vậy \({u_1} + 2024q = 2 + 2024 \cdot 2 = 4050\).

Trả lời: 4050.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(\left\{ \begin{array}{l}{u_2} - {u_3} + {u_5} = 10\\{u_4} + {u_6} = 26\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d = 10\\2{u_1} + 8d = 26\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = 3\end{array} \right.\).

Ta có \({u_n} = {u_1} + \left( {n - 1} \right)d = 1 + \left( {n - 1} \right) \cdot 3 = 3n - 2\).

b) Ta có \(3n - 2 = 37 \Leftrightarrow n = 13\).

Số 37 thuộc cấp số cộng và số 37 là số hạng thứ 13.

c) Ta có \({u_4} = {u_1} + 3d = 10;{u_7} = {u_1} + 6d = 19;{u_{10}} = {u_1} + 9d = 28\); …; \({u_{2011}} = {u_1} + 2010d = 6031\).

Khi đó \(S = {u_1} + {u_4} + {u_7} + ... + {u_{2011}} = 1 + 10 + 19 + 28 + ... + 6031 = \frac{{\left( {1 + 6031} \right).671}}{2} = 2023736\).

Câu 2

Số tiền lương sinh viên nhận được ở năm thứ hai là 144 triệu đồng.

Số tiền lương sinh viên nhận được ở năm thứ 10 là 330 triệu đồng.

Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} = 120\) và công sai d = 20.

Giả sử mỗi năm bạn sinh viên chi tiêu tiết kiệm hết 70 triệu đồng. Vậy sau ít nhất 10 năm thì sinh viên đó mua được căn chung cư 2 tỉ đồng.

Lời giải

a) Ta thấy số tiền lương năm sau hơn năm trước 24 triệu đồng nên số tiền lương hằng năm \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} = 120\) và công sai \(d = 24\).

Do đó \({u_n} = {u_1} + \left( {n - 1} \right)d = 120 + \left( {n - 1} \right) \cdot 24 = 24n + 96\).

Số tiền lương sinh viên nhận được ở năm thứ hai là \({u_2} = 144\).

b) \({u_{10}} = 24 \cdot 10 + 96 = 336\).

c) Dãy số \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_1} = 120\) và công sai d = 24.

d) Tổng số tiền bạn sinh viên tiết kiệm được sau n năm là:

\(S = \frac{n}{2}\left[ {2{u_1} + \left( {n - 1} \right)d} \right] - 70n = \frac{n}{2}\left[ {2 \cdot 120 + \left( {n - 1} \right) \cdot 24} \right] - 70n\) \( = 12{n^2} + 38n\).

Ta có \(S \ge 2000 \Leftrightarrow 12{n^2} + 38n - 2000 \ge 0 \Leftrightarrow \left[ \begin{array}{l}n \ge 11,42\\n \le - 14,59\end{array} \right.\).

Do đó ít nhất sau 12 năm thì sinh viên đó có thể mua được căn chung cư 2 tỉ đồng.

Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.

Câu 3

\({u_2} = 630\).

Giá tiền của chiếc ô tô qua các năm lập thành một cấp số cộng với công sai \(d = 50\).

Giá của chiếc ô tô sau 3 năm sử dụng lớn hơn 500 triệu đồng.

Sau ít nhất 8 năm sử dụng thì giá của chiếc ô tô nhỏ hơn một nửa giá ban đầu của nó.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Số hạng thứ hai của cấp số cộng là \({u_2} = 7\).

Công sai của cấp số cộng \(d = 5\).

Số hạng tổng quát của cấp số cộng đã cho \({u_n} = 5n + 3\).

Tổng các số hạng từ số hạng thứ 11 đến số hạng thứ 100 của cấp số cộng đã cho bằng 25705.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP