Câu hỏi:

17/11/2025 29 Lưu

Cho hình vẽ:

Media VietJack

a) \(EF\;{\rm{//}}\;AC.\)
Đúng
Sai
b) Tam giác \(ABC\) vuông tại \(A.\)
Đúng
Sai
c) \(AB = 10\;{\rm{m}}{\rm{.}}\)
Đúng
Sai
d) Diện tích tam giác \(ABC\) \(54\;{{\rm{m}}^2}.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

\(\widehat C = \widehat {BFE},\) mà hai góc này ở vị trí đồng vị nên \(EF\;{\rm{//}}\;AC.\)

b) Đúng.

\(EF\;{\rm{//}}\;AC,\)\(EF \bot AB\) nên \(AC \bot AB.\) Do đó, tam giác \(ABC\) vuông tại \(A.\)

c) Sai.

\(\Delta ABC\) có: \(EF\;{\rm{//}}\;AC\) nên theo định lí Thalès ta có: \(\frac{{BE}}{{AB}} = \frac{{BF}}{{BC}} = \frac{{BF}}{{BF + FC}}.\)

Do đó, \(AB = BE:\frac{{BF}}{{BF + FC}} = 3:\frac{5}{{5 + 10}} = 9\;\left( {\rm{m}} \right).\) Vậy \(AB = 9\;{\rm{m}}.\)

d) Đúng.

Diện tích \(\Delta ABC\) vuông tại \(A\) là: \(\frac{1}{2}AB \cdot AC = \frac{1}{2} \cdot 9 \cdot 12 = 54\;\left( {{{\rm{m}}^2}} \right).\)

Vậy diện tích tam giác \(ABC\) bằng \(54\;{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Tứ giác \(AEDF\) là hình bình hành
Đúng
Sai
b) \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)
Đúng
Sai
c) \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)
Đúng
Sai
d) \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 2.\)
Đúng
Sai

Lời giải

Media VietJack

a) Đúng.

Tứ giác \(AEDF\) có: \(AF\;{\rm{//}}\;ED,\;AE\;{\rm{//}}\;DF\) nên tứ giác \(AEDF\) là hình bình hành.

b) Đúng.

\(\Delta ABC\) có: \(AC\;{\rm{//}}\;ED\) nên theo định lí Thalès ta có: \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}.\)

c) Đúng.

\(\Delta ABC\) có: \(AB\;{\rm{//}}\;DF\) nên theo định lí Thalès ta có: \(\frac{{AF}}{{AC}} = \frac{{BD}}{{BC}}.\)

\(ED = AF\) (do tứ giác \(AEDF\) là hình bình hành) nên \(\frac{{ED}}{{AC}} = \frac{{BD}}{{BC}}.\)

d) Sai.

tứ giác \(AEDF\) là hình bình hành nên \(AE = DF.\) \(\frac{{AE}}{{AB}} = \frac{{CD}}{{BC}}\;\left( {cmt} \right)\) nên \(\frac{{DF}}{{AB}} = \frac{{CD}}{{BC}}.\)

Do đó, \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = \frac{{CD}}{{BC}} + \frac{{BD}}{{BC}} = \frac{{CD + BD}}{{BC}} = \frac{{BC}}{{BC}} = 1.\) Vậy \(\frac{{DF}}{{AB}} + \frac{{ED}}{{AC}} = 1.\)

Lời giải

Đáp án: \(6\)

Media VietJack

Qua \(D\) kẻ đường thẳng song song với \(KB\) cắt \(AC\) tại \(M.\)

\(\frac{{BD}}{{CD}} = 3\) nên \(\frac{{BD}}{{BC}} = \frac{3}{4}.\)\(AE = \frac{1}{3}AD\) nên \(\frac{{AE}}{{ED}} = \frac{1}{2}.\)

Tam giác \(AMD\)\(KE\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{AK}}{{KM}} = \frac{{AE}}{{ED}} = \frac{1}{2}\) hay \(AK = \frac{1}{2}KM.\)

Tam giác \(CKB\)\(KB\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{KM}}{{KC}} = \frac{{BD}}{{BC}} = \frac{3}{4}\) hay \(KM = \frac{3}{4}KC.\)

Do đó, \(AK = \frac{1}{2} \cdot \frac{3}{4}KC = \frac{3}{8}KC.\) Do đó, \(AK = \frac{3}{{11}}AC = \frac{3}{{11}} \cdot 22 = 6\;\left( {{\rm{cm}}} \right).\)

Vậy \(AK = 6\;{\rm{cm}}{\rm{.}}\)

Câu 5

A. \(\frac{{AD}}{{AB}} = \frac{{AE}}{{AC}}.\)                 
B. \(\frac{{AD}}{{AC}} = \frac{{AE}}{{AB}}.\)     
C. \(\frac{{AD}}{{AB}} = \frac{{AC}}{{AE}}.\)     
D. Cả A, B, C đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP