Cho hình thang \(ABCD\;\left( {AB\;{\rm{//}}\;CD,\;AB < CD} \right).\) Gọi \(M\) là điểm thuộc cạnh \(AD\) sao cho \(\frac{{AM}}{{AD}} = \frac{1}{3}.\) Gọi \(I\) là điểm thuộc cạnh \(AC\) sao cho \(\frac{{AI}}{{IC}} = \frac{1}{2}.\) Gọi \(N\) là giao điểm của đường thẳng \(MI\) và cạnh \(BC.\)
Quảng cáo
Trả lời:

a) Đúng.
Vì \(\frac{{AI}}{{IC}} = \frac{1}{2}\) nên \(\frac{{AI}}{{AC}} = \frac{1}{3}.\) Mà \(\frac{{AM}}{{AD}} = \frac{1}{3}\) nên \(\frac{{AM}}{{AD}} = \frac{{AI}}{{AC}}.\)
b) Đúng.
Tam giác \(ADC\) có: \(\frac{{AM}}{{AD}} = \frac{{AI}}{{AC}}\) nên \(MN\;{\rm{//}}\;CD\) (định lí Thalès đảo).
Mà \(AB\;{\rm{//}}\;CD\) nên \(MN\;{\rm{//}}\;CD\;{\rm{//}}\;AB.\)
c) Đúng.
Tam giác \(ABC\) có: \(IN\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{CN}}{{CB}} = \frac{{CI}}{{CA}}.\)
d) Sai.
Ta có: \(\frac{{AM}}{{AD}} + \frac{{CN}}{{CB}} = \frac{{AI}}{{AC}} + \frac{{CI}}{{AC}} = \frac{{AC}}{{AC}} = 1.\) Vậy \(\frac{{AM}}{{AD}} + \frac{{CN}}{{CB}} = 1.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: \(3\)

Vì \(D\) là trung điểm của \(BC\) nên \(BD = \frac{1}{2}BC = \frac{1}{2} \cdot 18 = 9\;\left( {{\rm{cm}}} \right).\)
Vì \(AD\) là trung tuyến của tam giác \(ABC\) và \(G\) là trọng tâm của tam giác \(ABC\) nên \(\frac{{GD}}{{AD}} = \frac{1}{3}.\)
Tam giác \(ADB\) có \(MG\;{\rm{//}}\;AB\) nên theo định lí Thalès ta có: \(\frac{{MD}}{{BD}} = \frac{{GD}}{{AD}} = \frac{1}{3}.\)
Do đó, \(MD = \frac{1}{3}BD = \frac{1}{3} \cdot 9 = 3\;\left( {{\rm{cm}}} \right).\) Vậy \(MD = 3\;{\rm{cm}}.\)
Lời giải
Đáp án: \(6\)

Qua \(D\) kẻ đường thẳng song song với \(KB\) cắt \(AC\) tại \(M.\)
Vì \(\frac{{BD}}{{CD}} = 3\) nên \(\frac{{BD}}{{BC}} = \frac{3}{4}.\) Vì \(AE = \frac{1}{3}AD\) nên \(\frac{{AE}}{{ED}} = \frac{1}{2}.\)
Tam giác \(AMD\) có \(KE\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{AK}}{{KM}} = \frac{{AE}}{{ED}} = \frac{1}{2}\) hay \(AK = \frac{1}{2}KM.\)
Tam giác \(CKB\) có \(KB\;{\rm{//}}\;MD\) nên theo định lí Thalès ta có: \(\frac{{KM}}{{KC}} = \frac{{BD}}{{BC}} = \frac{3}{4}\) hay \(KM = \frac{3}{4}KC.\)
Do đó, \(AK = \frac{1}{2} \cdot \frac{3}{4}KC = \frac{3}{8}KC.\) Do đó, \(AK = \frac{3}{{11}}AC = \frac{3}{{11}} \cdot 22 = 6\;\left( {{\rm{cm}}} \right).\)
Vậy \(AK = 6\;{\rm{cm}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
