Cho tam giác \(ABC\) có \(M,\;N\) lần lượt là trung điểm của \(AC,\;BC.\) Gọi \(I\) là giao điểm của \(AN\) và \(BM.\) Trên tia đối của tia \(MB\) lấy điểm \(F\) sao cho \(M\) là trung điểm của \(FI.\) Trên tia đối của tia \(NA\) lấy điểm \(E\) sao cho \(N\) là trung điểm của \(EI.\) Khi đó, \(\widehat F = ...\widehat {ABM}.\) Tìm số thích hợp điền vào dấu “…”.
Quảng cáo
Trả lời:
Đáp án: 1

\(\Delta ABC\) có: \(M,\;N\) lần lượt là trung điểm của \(AC,\;BC\) nên \(MN\) là đường trung bình của \(\Delta ABC.\)
Suy ra: \(MN\;{\rm{//}}\;AB\;\left( 1 \right).\)
\(\Delta IEF\) có: \(M\) là trung điểm của \(FI,\;N\) là trung điểm của \(EI\) nên \(MN\) là đường trung bình của \(\Delta IEF.\) Suy ra: \(MN\;{\rm{//}}\;EF\;\left( 2 \right).\)
Từ \(\left( 1 \right),\;\left( 2 \right)\) ta có: \(EF\;{\rm{//}}\;AB.\) Do đó, \(\widehat F = \widehat {ABM}\) (hai góc ở so le trong).
Vậy số thích hợp điền vào dấu “…” là \(1.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: B

\(\Delta ABC\) có: \(M\) là trung điểm của \(AB,\;N\) là trung điểm của \(AC\) nên \(MN\) là đường trung bình của \(\Delta ABC.\) Do đó, \(MN\;{\rm{//}}\;BC.\)
Lời giải
Đáp án: 6

\(\Delta ABC\) có: \(H\) là trung điểm \(BC,\;HK\;{\rm{//}}\;AB\) nên \(K\) là trung điểm của \(AC.\)
\(\Delta ABC\) có: \(H\) là trung điểm \(BC,\;K\) là trung điểm của \(AC\) nên \(HK\) là đường trung bình của \(\Delta ABC.\)
Do đó, \(AB = 2HK.\)
Ta có: \(AB + HK = 18\;{\rm{cm}}\) nên \(2HK + HK = 18.\) Suy ra \(3HK = 18.\) Vậy \(HK = 6\;{\rm{cm}}{\rm{.}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.