Câu hỏi:

17/11/2025 15 Lưu

Cho hình bình hành \(ABCD\)\(AD = 10\;{\rm{cm}},\;DC = 8\;{\rm{cm}}.\) Tia phân giác \(\widehat {ABC}\) cắt \(AC\) tại \(E.\) Tính tỉ số \(\frac{{EC}}{{AE}}.\)

A. \(\frac{2}{3}.\)       
B. \(\frac{3}{4}.\)     
C. \(\frac{3}{5}.\)      
D. \(\frac{4}{5}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Media VietJack

\(ABCD\) là hình bình hành nên \(BC = AD = 10\;{\rm{cm}},\;AB = DC = 8\;{\rm{cm}}.\)

\(BE\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{EC}}{{AE}} = \frac{{BC}}{{BA}} = \frac{{10}}{8} = \frac{4}{5}.\) Vậy \(\frac{{EC}}{{AE}} = \frac{4}{5}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\widehat {DAC} = 60^\circ .\)    
B. \(\widehat {DAC} = 40^\circ .\)    
C. \(\widehat {DAC} = 50^\circ .\)    
D. \(\widehat {DAC} = 45^\circ .\)

Lời giải

Đáp án đúng là: D

Media VietJack

\(\Delta ABC\) có: \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}\left( { = \frac{2}{3}} \right)\) nên \(AD\) là tia phân giác của \(\widehat {BAC}\) trong \(\Delta ABC.\)

Do đó, \(\widehat {DAC} = \frac{1}{2}\widehat {BAC} = \frac{1}{2} \cdot 90^\circ = 45^\circ .\) Vậy \(\widehat {DAC} = 45^\circ .\)

Lời giải

Đáp án: \(40\)

Media VietJack

\(\frac{{AI}}{{AH}} = \frac{3}{5}\) nên \(\frac{{AI}}{{IH}} = \frac{3}{2}.\)

\(BI\) là tia phân giác của \(\widehat {ABH}\) trong \(\Delta AHB\) nên \(\frac{{AB}}{{BH}} = \frac{{AI}}{{IH}} = \frac{3}{2}.\)

Do đó, \(BH = \frac{2}{3}AB = \frac{2}{3} \cdot 12 = 8\;\left( {{\rm{cm}}} \right).\)

\(AB = AC = 12\;{\rm{cm}}\) nên \(\Delta ABC\) cân tại \(A.\)

Nên \(AH\) là đường cao đồng thời là đường trung tuyến của tam giác đó.

Suy ra: \(BC = 2BH = 2 \cdot 8 = 16\;\left( {{\rm{cm}}} \right).\)

Chu vi \(\Delta ABC\) là: \(AB + AC + BC = 12 + 12 + 16 = 40\;\left( {{\rm{cm}}} \right).\)

Vậy chu vi \(\Delta ABC\) bằng \(40\;{\rm{cm}}{\rm{.}}\)

Câu 3

A. \(AE\) là đường phân giác của \(\Delta ABC.\)    
B. \(AE\) là đường trung trực của \(\Delta ABC.\)          
C. \(AE\) là đường cao của \(\Delta ABC.\)   
D. \(AE\) là đường trung tuyến của \(\Delta ABC.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\widehat {ABD} = \frac{2}{3}\widehat {DBC}.\)   
B. \(\widehat {ABD} = \frac{4}{5}\widehat {DBC}.\)
C. \(\widehat {ABD} = \frac{3}{4}\widehat {DBC}.\)    
D. \(\widehat {ABD} = \widehat {DBC}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP