Câu hỏi:

17/11/2025 33 Lưu

Cho \(\Delta ABC\) cân tại \(B.\) Kẻ các đường phân giác \(AM\;\left( {M \in BC} \right),\;CN\;\left( {N \in AB} \right).\)

 

a) \(\frac{{BM}}{{MC}} = \frac{{AB}}{{AC}}.\)
Đúng
Sai
b) \(\frac{{BN}}{{AN}} = \frac{{AC}}{{BC}}.\)
Đúng
Sai
c) \(MN\;{\rm{//}}\;AC.\)
Đúng
Sai
d) Tứ giác \(MNAC\) là hình thang cân.
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

a) Đúng.

\(AM\) là tia phân giác của \(\widehat {BAC}\) trong \(\Delta ABC\) nên \(\frac{{BM}}{{MC}} = \frac{{AB}}{{AC}}.\)

b) Sai.

\(CN\) là tia phân giác của \(\widehat {BCA}\) trong \(\Delta ABC\) nên \(\frac{{BN}}{{AN}} = \frac{{BC}}{{AC}}.\)

c) Đúng.

\(\Delta ABC\) cân tại \(B\) nên \(AB = BC.\)

\(AB = BC,\;\frac{{BN}}{{AN}} = \frac{{BC}}{{AC}},\;\frac{{BM}}{{MC}} = \frac{{AB}}{{AC}}\) nên \(\frac{{BM}}{{MC}} = \frac{{BN}}{{AN}}.\)

\(\Delta ABC\) có: \(\frac{{BM}}{{MC}} = \frac{{BN}}{{AN}}\) (định lí Thalès đảo) nên \(MN\;{\rm{//}}\;AC.\)

d) Đúng.

\(MN\;{\rm{//}}\;AC\) nên tứ giác \(MNAC\) là hình thang. Lại có: \(\widehat {NAC} = \widehat {MCA}\) (do \(\Delta ABC\) cân tại \(B\)).

Do đó, tứ giác \(MNAC\) là hình thang cân.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(2,3\)

Media VietJack

\(BE\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{EA}}{{EC}} = \frac{{AB}}{{CB}} = \frac{5}{8}.\) Suy ra: \(EC = \frac{8}{5}EA.\)

Lại có: \(AE + EC = AC\) nên \(AE + \frac{8}{5}AE = 6,\) suy ra \(\frac{{13}}{5}AE = 6.\) Vậy \(AE \approx 2,3\;{\rm{cm}}{\rm{.}}\)

Câu 2

A. \(\widehat {ABD} = \frac{2}{3}\widehat {DBC}.\)   
B. \(\widehat {ABD} = \frac{4}{5}\widehat {DBC}.\)
C. \(\widehat {ABD} = \frac{3}{4}\widehat {DBC}.\)    
D. \(\widehat {ABD} = \widehat {DBC}.\)

Lời giải

Đáp án đúng là: D

Media VietJack

\(\Delta ABC\)\(\frac{{AI}}{{BI}} = \frac{{AC}}{{BC}}\) nên \(CI\) là tia phân giác của \(\widehat {ACB}.\)

\(D\) là giao điểm của hai đường phân giác \(AE\)\(CI\) của \(\Delta ABC\) nên \(BD\) là đường phân giác của \(\widehat {ABC}\) trong \(\Delta ABC.\) Do đó, \(\widehat {ABD} = \widehat {DBC}.\)

Câu 3

a) \(\frac{{IA}}{{ID}} = \frac{{BD}}{{BA}}.\)
Đúng
Sai
b) \(\frac{{AD}}{{ID}} = \frac{{AB + BD}}{{BD}}.\)
Đúng
Sai
c) \(\frac{{AD}}{{ID}} = \frac{{CA + CD}}{{CD}}.\)
Đúng
Sai
d) \(\frac{{DI}}{{DA}} = \frac{{AC}}{{AB + BC + CA}}.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(AI > AE.\)
Đúng
Sai
b) \(\frac{{AB}}{{IA}} = \frac{{BH}}{{HI}}.\)
Đúng
Sai
c) \(\frac{{BH}}{{IH}} = \frac{{BC}}{{EC}}.\)
Đúng
Sai
d) \(EC = 3IH.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\)        
B. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{DB}}.\)   
C. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{BC}}.\)      
D. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{BC}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP