Câu hỏi:

17/11/2025 40 Lưu

Cho \(\Delta ABC\) vuông cân tại \(A.\) Kẻ \(BE\;\left( {E \in AC} \right)\) là tia phân giác của \(\widehat {ABC}\)\(AH \bot BC\;\left( {H \in BC} \right).\) Goi \(I\) là giao điểm của \(AH\)\(BE.\)

a) \(AI > AE.\)
Đúng
Sai
b) \(\frac{{AB}}{{IA}} = \frac{{BH}}{{HI}}.\)
Đúng
Sai
c) \(\frac{{BH}}{{IH}} = \frac{{BC}}{{EC}}.\)
Đúng
Sai
d) \(EC = 3IH.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Media VietJack

a) Sai.

\(\Delta ABC\) vuông cân tại \(A\) nên \(\widehat {ABC} = \widehat {ACB}.\)

\(BE\) là tia phân giác của \(\widehat {ABC}\) nên \(\widehat {ABI} = \widehat {IBH} = \frac{1}{2}\widehat {ABC}.\)

\(\Delta BIH\) vuông tại \(H\) nên: \(\widehat {BIH} + \widehat {HBI} = 90^\circ \) suy ra \(\widehat {BIH} = 90^\circ - \widehat {HBI} = 90^\circ - \frac{1}{2}\widehat {ABC}.\)

\(\widehat {BIH} = \widehat {AIE}\) (hai góc đối đỉnh) nên \(\widehat {AIE} = 90^\circ - \frac{1}{2}\widehat {ABC}.\)

\(\Delta ABE\) vuông tại \(A\) nên: \(\widehat {IEA} + \widehat {ABI} = 90^\circ \) suy ra \(\widehat {IEA} = 90^\circ - \widehat {ABI} = 90^\circ - \frac{1}{2}\widehat {ABC}.\)

Do đó, \(\widehat {AIE} = \widehat {IEA}.\) Do đó, \(\Delta IAE\) cân tại \(A.\) Do đó, \(AI = AE.\)

b) Đúng.

\(BI\) là tia phân giác của \(\widehat {ABH}\) trong tam giác \(ABH\) nên \(\frac{{AI}}{{IH}} = \frac{{AB}}{{BH}}.\) Suy ra \(\frac{{AB}}{{IA}} = \frac{{BH}}{{HI}}.\)

c) Đúng.

\(BE\) là tia phân giác của \(\widehat {ABC}\) trong tam giác \(\Delta ABC\) nên \(\frac{{AE}}{{EC}} = \frac{{AB}}{{BC}}.\) Suy ra \(\frac{{AB}}{{AE}} = \frac{{BC}}{{EC}}.\)

\(\frac{{AB}}{{IA}} = \frac{{BH}}{{HI}},\;\frac{{AB}}{{AE}} = \frac{{BC}}{{EC}},\;AI = AE\) nên \(\frac{{BH}}{{IH}} = \frac{{BC}}{{EC}}.\)

d) Sai.

\(\frac{{BH}}{{IH}} = \frac{{BC}}{{EC}}\) nên \(EC = \frac{{BC \cdot HI}}{{BH}}.\)

\(\Delta ABC\) vuông cân tại \(A\) nên \(AH\) là đường cao đồng thời là đường trung tuyến của \(\Delta ABC.\)

Do đó, \(BC = 2BH.\) Suy ra: \(EC = \frac{{2BH \cdot HI}}{{BH}} = 2HI.\) Vậy \(EC = 2IH.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(2,3\)

Media VietJack

\(BE\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{EA}}{{EC}} = \frac{{AB}}{{CB}} = \frac{5}{8}.\) Suy ra: \(EC = \frac{8}{5}EA.\)

Lại có: \(AE + EC = AC\) nên \(AE + \frac{8}{5}AE = 6,\) suy ra \(\frac{{13}}{5}AE = 6.\) Vậy \(AE \approx 2,3\;{\rm{cm}}{\rm{.}}\)

Câu 2

A. \(\widehat {ABD} = \frac{2}{3}\widehat {DBC}.\)   
B. \(\widehat {ABD} = \frac{4}{5}\widehat {DBC}.\)
C. \(\widehat {ABD} = \frac{3}{4}\widehat {DBC}.\)    
D. \(\widehat {ABD} = \widehat {DBC}.\)

Lời giải

Đáp án đúng là: D

Media VietJack

\(\Delta ABC\)\(\frac{{AI}}{{BI}} = \frac{{AC}}{{BC}}\) nên \(CI\) là tia phân giác của \(\widehat {ACB}.\)

\(D\) là giao điểm của hai đường phân giác \(AE\)\(CI\) của \(\Delta ABC\) nên \(BD\) là đường phân giác của \(\widehat {ABC}\) trong \(\Delta ABC.\) Do đó, \(\widehat {ABD} = \widehat {DBC}.\)

Câu 3

a) \(\frac{{IA}}{{ID}} = \frac{{BD}}{{BA}}.\)
Đúng
Sai
b) \(\frac{{AD}}{{ID}} = \frac{{AB + BD}}{{BD}}.\)
Đúng
Sai
c) \(\frac{{AD}}{{ID}} = \frac{{CA + CD}}{{CD}}.\)
Đúng
Sai
d) \(\frac{{DI}}{{DA}} = \frac{{AC}}{{AB + BC + CA}}.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\)        
B. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{DB}}.\)   
C. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{BC}}.\)      
D. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{BC}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP