Câu hỏi:

17/11/2025 34 Lưu

Cho \(\Delta ABC\) có chu vi bằng \(148\;{\rm{cm}}{\rm{.}}\) Đường phân giác góc \(A\) cắt \(BC\) tại \(D\) sao cho \(\frac{{BD}}{{BC}} = \frac{2}{5}.\) Đường phân giác góc \(C\) cắt \(AB\) tại \(E\) sao cho \(\frac{{AE}}{{AB}} = \frac{5}{9}.\) Độ dài cạnh \(BC\) bằng bao nhiêu \({\rm{cm}}?\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án: \(48\)

Media VietJack

\(\frac{{BD}}{{BC}} = \frac{2}{5}\) nên \(\frac{{BD}}{{DC}} = \frac{2}{3}.\)\(\frac{{AE}}{{AB}} = \frac{5}{9}\) nên \(\frac{{AE}}{{BE}} = \frac{5}{4}.\)

Vì chu vi \(\Delta ABC\) bằng \(148\;{\rm{cm}}\) nên \(AB + AC + BC = 148.\)

\(AD\) là tia phân giác của \(\widehat {CAB}\) trong \(\Delta ABC\) nên \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}} = \frac{2}{3}.\) Suy ra \[\frac{{AB}}{2} = \frac{{AC}}{3}.\]

\(CE\) là tia phân giác của \(\widehat {ACB}\) trong \(\Delta ABC\) nên \(\frac{{CA}}{{CB}} = \frac{{AE}}{{EB}} = \frac{5}{4}.\) Suy ra \(\frac{{AC}}{5} = \frac{{BC}}{4}.\)

\[\frac{{AB}}{2} = \frac{{AC}}{3},\;\frac{{AC}}{5} = \frac{{BC}}{4}\] nên \(\frac{{AB}}{{10}} = \frac{{AC}}{{15}} = \frac{{BC}}{{12}}.\)

Theo tính chất của dãy tỉ số bằng nhau ta có: \(\frac{{AB}}{{10}} = \frac{{AC}}{{15}} = \frac{{BC}}{{12}} = \frac{{AB + AC + BC}}{{10 + 15 + 12}} = \frac{{148}}{{37}} = 4.\)

Do đó, \(BC = 4 \cdot 12 = 48\;\left( {{\rm{cm}}} \right).\) Vậy \(BC = 48\;{\rm{cm}}{\rm{.}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(2,3\)

Media VietJack

\(BE\) là tia phân giác của \(\widehat {ABC}\) trong \(\Delta ABC\) nên \(\frac{{EA}}{{EC}} = \frac{{AB}}{{CB}} = \frac{5}{8}.\) Suy ra: \(EC = \frac{8}{5}EA.\)

Lại có: \(AE + EC = AC\) nên \(AE + \frac{8}{5}AE = 6,\) suy ra \(\frac{{13}}{5}AE = 6.\) Vậy \(AE \approx 2,3\;{\rm{cm}}{\rm{.}}\)

Câu 2

A. \(\widehat {ABD} = \frac{2}{3}\widehat {DBC}.\)   
B. \(\widehat {ABD} = \frac{4}{5}\widehat {DBC}.\)
C. \(\widehat {ABD} = \frac{3}{4}\widehat {DBC}.\)    
D. \(\widehat {ABD} = \widehat {DBC}.\)

Lời giải

Đáp án đúng là: D

Media VietJack

\(\Delta ABC\)\(\frac{{AI}}{{BI}} = \frac{{AC}}{{BC}}\) nên \(CI\) là tia phân giác của \(\widehat {ACB}.\)

\(D\) là giao điểm của hai đường phân giác \(AE\)\(CI\) của \(\Delta ABC\) nên \(BD\) là đường phân giác của \(\widehat {ABC}\) trong \(\Delta ABC.\) Do đó, \(\widehat {ABD} = \widehat {DBC}.\)

Câu 3

a) \(\frac{{IA}}{{ID}} = \frac{{BD}}{{BA}}.\)
Đúng
Sai
b) \(\frac{{AD}}{{ID}} = \frac{{AB + BD}}{{BD}}.\)
Đúng
Sai
c) \(\frac{{AD}}{{ID}} = \frac{{CA + CD}}{{CD}}.\)
Đúng
Sai
d) \(\frac{{DI}}{{DA}} = \frac{{AC}}{{AB + BC + CA}}.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

a) \(AI > AE.\)
Đúng
Sai
b) \(\frac{{AB}}{{IA}} = \frac{{BH}}{{HI}}.\)
Đúng
Sai
c) \(\frac{{BH}}{{IH}} = \frac{{BC}}{{EC}}.\)
Đúng
Sai
d) \(EC = 3IH.\)
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{DC}}.\)        
B. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{DB}}.\)   
C. \(\frac{{AB}}{{AC}} = \frac{{BD}}{{BC}}.\)      
D. \(\frac{{AB}}{{AC}} = \frac{{DC}}{{BC}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP