Câu hỏi:

17/11/2025 3 Lưu

(1 điểm) Một học sinh dự định vẽ các tấm thiệp xuân làm bằng tay để bán trong một hội chợ Tết. Cần 2 giờ để vẽ một tấm thiệp loại nhỏ có giá 10 nghìn đồng và 3 giờ để vẽ một tấm thiệp loại lớn có giá 20 nghìn đồng. Học sinh này chỉ có 30 giờ để vẽ và ban tổ chức hội chợ yêu cầu phải vẽ ít nhất 12 tấm. Hãy cho biết bạn ấy cần vẽ bao nhiêu tấm thiệp mỗi loại để có được nhiều tiền nhất.                                  

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x,\,\,y\) lần lượt là số tấm thiệp loại nhỏ và loại lớn cần vẽ. Ta có \(x \ge 0,\,y \ge 0\).

Số giờ để vẽ \(x\) tấm thiệp loại nhỏ và \(y\) tấm thiệp loại lớn là \(2x + 3y\).

Vì học sinh chỉ có 30 giờ để vẽ nên \(2x + 3y \le 30\).

Số tấm thiệp phải vẽ ít nhất là 12 tấm nên \(x + y \ge 12\).

Từ đó ta thu được hệ bất phương trình bậc nhất hai ẩn sau: \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \ge 12\\2x + 3y \le 30\end{array} \right.\).

Số tiền thu được khi bán \(x\) tấm thiệp loại nhỏ và \(y\) tấm thiệp loại lớn là \(F\left( {x;\,y} \right) = 10x + 20y\) (nghìn đồng).

Bài toán trở thành: Tìm giá trị lớn nhất của \(F\left( {x;\,\,y} \right)\) khi \(\left( {x;\,\,y} \right)\) thỏa mãn hệ bất phương trình trên.

Biểu diễn miền nghiệm của hệ bất phương trình trên hệ trục tọa độ \[Oxy\] ta được như hình dưới.

Một học sinh dự định vẽ các tấm thiệp xuân làm bằng tay để bán trong một hội chợ Tết. Cần 2 giờ để vẽ một tấm thiệp loại nhỏ có giá 10 nghìn đồng và 3 giờ để vẽ một tấm thiệp loại lớn có giá 20 nghìn đồng. (ảnh 1)

Miền nghiệm của hệ là miền tam giác \(ABC\) với các đỉnh: \(A\left( {6;\,\,6} \right)\), \(B\left( {15;\,\,0} \right)\), \(C\left( {12;\,\,0} \right)\).

Tính giá trị của \(F\left( {x;\,\,y} \right)\) tại các đỉnh của ngũ giác:

Tại \(A\left( {6;\,\,6} \right)\): \(F\left( {6;\,\,6} \right) = 10 \cdot 6 + 20 \cdot 6 = 180\);

Tại \(B\left( {15;\,\,0} \right)\): \(F\left( {15;\,\,0} \right) = 10 \cdot 15 + 20 \cdot 0 = 150\);

Tại \(C\left( {12;\,\,0} \right)\): \(F\left( {12;\,\,0} \right) = 10 \cdot 12 + 20 \cdot 0 = 120\).

\(F\) đạt giá trị lớn nhất bằng 180 tại \(A\left( {6;\,\,6} \right)\).

Vậy bạn học sinh đó cần vẽ 6 tấm thiệp loại nhỏ và 6 tấm thiệp loại to để có được nhiều tiền nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(m = - \frac{5}{9}\);                                     
B. \(m = - \frac{9}{5}\).               
C. \(m = \frac{5}{9}\);    
D. \(m = \frac{9}{5}\).

Lời giải

Đáp án đúng là: A

Ta có: \(\frac{{\left| {\overrightarrow a } \right|}}{{\left| {\overrightarrow b } \right|}} = \frac{{10}}{{18}} = \frac{5}{9} \Leftrightarrow \left| {\overrightarrow a } \right| = \frac{5}{9}\left| {\overrightarrow b } \right|\), mà hai vectơ \(\overrightarrow a ,\,\overrightarrow b \) ngược hướng nên \[\overrightarrow a = - \frac{5}{9}\overrightarrow b \].

Vậy \(m = - \frac{5}{9}\).

Lời giải

a) Ta có: \[B{C^2} = {\left| {\overrightarrow {BC} } \right|^2} = {\overrightarrow {BC} ^2} = {\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)^2} = A{C^2} + A{B^2} - 2\overrightarrow {AC} \cdot \overrightarrow {AB} \].

Suy ra: \[\overrightarrow {AB} \cdot \overrightarrow {AC} = \frac{{A{C^2} + A{B^2} - B{C^2}}}{2} = \frac{{{b^2} + {c^2} - {a^2}}}{2}\].

Tương tự ta có: \[\overrightarrow {BC} \cdot \overrightarrow {BA} = \frac{{{a^2} + {c^2} - {b^2}}}{2};\;\;\;\overrightarrow {CA} \cdot \overrightarrow {CB} = \frac{{{a^2} + {b^2} - {c^2}}}{2}\].

Suy ra: \[\;\overrightarrow {AB} \cdot \overrightarrow {BC} + \overrightarrow {BC} \cdot \overrightarrow {CA} + \overrightarrow {CA} \cdot \overrightarrow {AB} \]\[ = - \overrightarrow {BA} \cdot \overrightarrow {BC} - \overrightarrow {CB} \cdot \overrightarrow {CA} - \overrightarrow {AC} \cdot \overrightarrow {AB} \]

\[ = - \left( {\frac{{{c^2} + {a^2} - {b^2}}}{2} + \frac{{{a^2} + {b^2} - {c^2}}}{2} + \frac{{{b^2} + {c^2} - {a^2}}}{2}} \right) = - \frac{{{a^2} + {b^2} + {c^2}}}{2}\].

b) Ta có: \[\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AM} \] với \[M\] là trung điểm của \[BC\].

\[G\] là trọng tâm tam giác \[ABC\] nên \[\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \]. Vậy \[\overrightarrow {AG} = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\].

Suy ra: \[A{G^2} = {\overrightarrow {AG} ^2} = \frac{1}{9}{\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)^2} = \frac{1}{9}\left( {A{B^2} + A{C^2} + 2\overrightarrow {AB} \cdot \overrightarrow {AC} } \right)\]

\[ = \frac{1}{9}\left( {{c^2} + {b^2} + 2 \cdot \frac{{{b^2} + {c^2} - {a^2}}}{2}} \right) = \frac{1}{9}\left( {2{b^2} + 2{c^2} - {a^2}} \right)\].

\[ \Rightarrow AG = \frac{1}{3}\sqrt {2\left( {{b^2} + {c^2}} \right) - {a^2}} \].

Ta có: \[\overrightarrow {AG} \cdot \overrightarrow {BC} = \left| {\overrightarrow {AG} } \right| \cdot \left| {\overrightarrow {BC} } \right| \cdot \cos \left( {\overrightarrow {AG} ,\,\,\overrightarrow {BC} } \right)\]\( \Rightarrow \cos \left( {\overrightarrow {AG} ,\,\,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {AG} \cdot \overrightarrow {BC} }}{{\left| {\overrightarrow {AG} } \right| \cdot \left| {\overrightarrow {BC} } \right|}}\).

Lại có: \[\overrightarrow {AG} \cdot \overrightarrow {BC} = \frac{1}{3}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \frac{1}{3}\left( {A{C^2} - A{B^2}} \right) = \frac{1}{3}\left( {{b^2} - {c^2}} \right)\].

Do đó, \[\cos \left( {\overrightarrow {AG} ,\,\overrightarrow {BC} } \right) = \frac{{\frac{1}{3}\left( {{b^2} - {c^2}} \right)}}{{\frac{1}{3}\sqrt {2\left( {{b^2} + {c^2}} \right) - {a^2}} \cdot a}} = \frac{{{b^2} - {c^2}}}{{a\sqrt {2\left( {{b^2} + {c^2}} \right) - {a^2}} }}\].

Câu 3

A. \(\overrightarrow {MA} = \frac{1}{3}\overrightarrow {MB} \);                      
B. \(\overrightarrow {AM} = \frac{1}{4}\overrightarrow {AB} \);                 
C. \(\overrightarrow {BM} = \frac{3}{4}\overrightarrow {BA} \);                       
D. \(\overrightarrow {MB} = - 3\overrightarrow {MA} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{75}}{4}\);  
B. \( - \frac{{75}}{4}\);   
C. \(\frac{{75}}{2}\);       
D. \( - \frac{{75}}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow a \cdot \overrightarrow b < 0\);                               
B. \(\overrightarrow a \cdot \overrightarrow b = 0\);                                   
C. \(\overrightarrow a \cdot \overrightarrow b > 0\);                               
D. \(\overrightarrow a \cdot \overrightarrow b \ge 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP