Câu hỏi:

18/11/2025 11 Lưu

Cho góc \[\alpha \] thỏa mãn \(\frac{\pi }{2} < \alpha < \pi \) và \(\sin \alpha = \frac{4}{5}.\) Giá trị của \(M = \sin 2\left( {\alpha + \pi } \right)\) là

A. \(M = - \frac{{24}}{{25}}.\)

B. \(M = \frac{{24}}{{25}}.\)

C. \(M = - \frac{{12}}{{25}}.\)

D. \(M = \frac{{12}}{{25}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Ta có: \(M = \sin 2\left( {\alpha + \pi } \right) = \sin \left( {2\alpha + 2\pi } \right) = \sin 2\alpha = 2\sin \alpha .\cos \alpha .\)

Từ hệ thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1 \Rightarrow \cos \alpha = \pm \sqrt {1 - {{\sin }^2}\alpha } = \pm \sqrt {1 - {{\left( {\frac{4}{5}} \right)}^2}} = \pm \frac{3}{5}.\)

Do \(\frac{\pi }{2} < \alpha < \pi \Rightarrow \cos \alpha < 0 \Rightarrow \cos \alpha = - \frac{3}{5}.\)

Thay \(\sin \alpha = \frac{4}{5}\) và \(\cos \alpha = - \frac{3}{5}\) vào \(M,\) ta được \(M = 2.\frac{4}{5}.\left( { - \frac{3}{5}} \right) = - \frac{{24}}{{25}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

\[\left( {BCE} \right){\rm{//}}\left( {DIK} \right).\]

\[\left( {ADF} \right){\rm{//}}\left( {BCE} \right).\]

\(\left( {BCE} \right){\rm{//}}\left( {BEJ} \right).\)

\[\left( {ADF} \right){\rm{//}}\left( {BEJ} \right).\]

Lời giải

Đáp án đúng là: B

Cho hai hình bình hành  A B C D  và  A B E F  có cạnh chung  A B  và không đồng phẳng. Gọi  I , J , K  lần lượt là trung điểm của  A B , C D , E F .  Khẳng đinh nào sau đây đúng? (ảnh 1)

Do \(ABEF\) là hình bình hành nên \(AF{\rm{//}}BE.\)

Mà \(BE \subset \left( {BCE} \right);\,\,AF \not\subset \left( {BCE} \right) \Rightarrow AF{\rm{//}}\left( {BCE} \right).\)

Do \(ABCD\) là hình bình hành nên \(AD{\rm{//}}BC.\)

Mà \(BC \subset \left( {BCE} \right);\,\,AD \not\subset \left( {BCE} \right) \Rightarrow AD{\rm{//}}\left( {BCE} \right).\)

Ta có: \(AF{\rm{//}}\left( {BCE} \right);\,\,AD{\rm{//}}\left( {BCE} \right)\) và \(AF \cap AD = A\) trong \(\left( {ADF} \right).\)

Suy ra \[\left( {ADF} \right){\rm{//}}\left( {BCE} \right).\]

Lời giải

Cho hình chóp  S . A B C D  có đáy là hình bình hành tâm  O .  Gọi  M  là trung điểm của  S B , N  là điểm trên cạnh  B C  sao cho  B N = 2 C N . (ảnh 1)

a) Vì \(ABCD\) là hình bình hành tâm \(O\) nên \(O\) là trung điểm của \(AC,\,\,BD.\)

Xét \(\Delta SBD\) có: \(O,\,\,M\) lần lượt là trung điểm của \(BD,\,\,SB.\)

Suy ra \(OM\) là đường trung bình của \(\Delta SBD.\)

\( \Rightarrow OM//SD.\)

Hơn nữa \(SD \subset \left( {SCD} \right);\,\,OM\,\, \not\subset \left( {SCD} \right).\)

\( \Rightarrow OM{\rm{//}}\left( {SCD} \right).\)

b) Trong \(\left( {ABCD} \right)\) gọi \(K = AN \cap CD.\)

\[ \Rightarrow K \in AN;\,\,K \in CD.\]

Mà \(AN \subset \left( {AMN} \right)\) và \(CD \subset \left( {SCD} \right).\)

\( \Rightarrow K \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (1)

Vì \(N\) là điểm trên cạnh \(BC\) sao cho \(BN = 2CN\) nên \(MN\) không song song với \(SC.\) Trong \(\left( {SBC} \right)\) gọi \[H = MN \cap SC.\]

\( \Rightarrow H \in MN;\,\,H \in SC.\)

Mà \(MN \subset \left( {AMN} \right)\) và \(SC \subset \left( {SCD} \right).\)

\( \Rightarrow H \in \left( {SCD} \right) \cap \left( {AMN} \right).\) (2)

Từ (1) và (2) ta có \(HK = \left( {SCD} \right) \cap \left( {AMN} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Đường thẳng \(BG\) (\(G\) là trọng tâm tam giác\[ACD\]).

Đường thẳng \(AH\) (\(H\) là trực tâm tam giác \[ACD\]).

Đường thẳng \(MN.\)

Đường thẳng \(AM.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\[DI\] cắt \(\left( {SBC} \right).\)

\(CD{\rm{//}}\left( {SAB} \right).\)

\[AD\] cắt \(\left( {SBC} \right).\)

\[AB{\rm{//}}\left( {SCD} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP