Câu hỏi:

18/11/2025 16 Lưu

Trong các hàm số sau, hàm số nào liên tục trên \(\mathbb{R}\)?

\(f\left( x \right) = \tan x + 5.\)

\(f\left( x \right) = \frac{{{x^2} + 3}}{{5 - x}}.\)

\(f\left( x \right) = \sqrt {x - 6} .\)

\(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Xét hàm số \(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}.\)

Điều kiện xác định \({x^2} + 4 \ne 0 \Leftrightarrow {x^2} \ne - 4\) (luôn đúng vì \({x^2} \ge 0\)).

Tập xác định của hàm số \(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\) là \(D = \mathbb{R}.\)

Hàm số \(f\left( x \right) = \frac{{x + 5}}{{{x^2} + 4}}\) là hàm phân thức nên hàm số liên tục trên tập xác định của nó.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

\(AK\) với \(K\) là giao điểm của \(IJ\) và \(BC.\)

\(AH\) với \(H\) là giao điểm của \(IJ\) và \(AB.\)

\(AG\) với \(G\) là giao điểm của \(IJ\) và \(AD.\)

\(AF\) với \(F\) là giao điểm của \(IJ\) và \(CD.\)

Lời giải

Đáp án đúng là: D

Cho hình chóp  S . A B C D . Gọi  I  là trung điểm của  S D , J  là điểm trên  S C  và không trùng trung điểm  S C . Giao tuyến của hai mặt phẳng  ( A B C D )  và  ( A I J )  là (ảnh 1)

Trong mặt phẳng \(\left( {SCD} \right)\), kẻ \[IJ \cap CD = F.\]

\( \Rightarrow \left\{ \begin{array}{l}F \in IJ \subset \left( {AIJ} \right)\\F \in CD \subset \left( {ABCD} \right)\end{array} \right. \Rightarrow F \in \left( {AIJ} \right) \cap \left( {ABCD} \right).\)

Mặt khác \(A \in \left( {AIJ} \right) \cap \left( {ABCD} \right).\)

Vậy \(\left( {ABCD} \right) \cap \left( {AIJ} \right) = AF.\)

Câu 2

\(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\).

\(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).

\(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).

\(\mathop {\lim }\limits_{x \to {a^ - }} f\left( x \right) = f\left( a \right)\) và \(\mathop {\lim }\limits_{x \to {b^ + }} f\left( x \right) = f\left( b \right)\).

Lời giải

Đáp án đúng là: C

Theo định nghĩa, ta có hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) nếu hàm số \(y = f\left( x \right)\) liên tục \(\left( {a;b} \right)\) và \(\mathop {\lim }\limits_{x \to {a^ + }} f\left( x \right) = f\left( a \right);\) \(\mathop {\lim }\limits_{x \to {b^ - }} f\left( x \right) = f\left( b \right)\).

Câu 3

Nếu \(\left( P \right){\rm{//}}\left( Q \right)\) thì \(a{\rm{//}}b.\)

Nếu \(\left( P \right){\rm{//}}\left( Q \right)\) thì \(b{\rm{//}}\left( P \right).\)

Nếu \[\left( P \right){\rm{//}}\left( Q \right)\] thì \(a\) và \(b\) hoặc song song hoặc chéo nhau.

Nếu \(\left( P \right){\rm{//}}\left( Q \right)\) thì \(a{\rm{//}}\left( Q \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

\({u_7} = {u_4}{q^3}.\)

\({u_7} = {u_4}{q^4}.\)

\({u_7} = {u_4}{q^5}.\)

\({u_7} = {u_4}{q^6}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

\(x = \frac{{2\pi }}{3} + k2\pi ,\,\,k \in \mathbb{Z}.\)

\(x = \pm \frac{\pi }{3} + k\pi ,\,\,k \in \mathbb{Z}.\)

\(x = \pm \frac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}.\)

\(x = \frac{\pi }{3} + k2\pi ,\,\,k \in \mathbb{Z}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP