Câu hỏi:

18/11/2025 51 Lưu

Cho biết hai hình chữ nhật \(ABCD\)\(MNPQ\) (hình vẽ dưới) là hai hình đồng dạng:

Media VietJack

Biết rằng chu vi hình chữ nhật \(ABCD\) bằng \(100\;\,{\rm{cm}}{\rm{.}}\) Khi đó:

a) \(AD = 20\;\,{\rm{cm}}{\rm{.}}\)
Đúng
Sai
b) Hình chữ nhật \(ABCD\) đồng dạng với hình chữ nhật \(MNPQ\) theo tỉ số đồng dạng là 2.
Đúng
Sai
c) \(MQ > 10\;\,{\rm{cm}}{\rm{.}}\)
Đúng
Sai
d) Diện tích hình chữ nhật \(MNPQ\) bằng \(300\;\,{\rm{c}}{{\rm{m}}^2}.\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng.

Ta có: \(2\left( {AD + DC} \right) = 100\) suy ra \(AD + 30 = 50,\) suy ra \(AD = 20\;\,\left( {{\rm{cm}}} \right).\) Vậy \(AD = 20\;\,{\rm{cm}}{\rm{.}}\)

b) Đúng.

Hình chữ nhật \(ABCD\) đồng dạng với hình chữ nhật \(MNPQ\) theo tỉ số đồng dạng là: \(\frac{{DC}}{{QP}} = \frac{{30}}{{12}} = 2.\)

Vậy hình chữ nhật \(ABCD\) đồng dạng với hình chữ nhật \(MNPQ\) theo tỉ số đồng dạng là 2.

c) Sai.

Ta có: \(\frac{{AD}}{{MQ}} = \frac{{DC}}{{PQ}} = 2,\) nên \(MQ = AD:2 = 20:2 = 10\;\,\left( {{\rm{cm}}} \right).\) Vậy \(MQ = 10\;\,{\rm{cm}}{\rm{.}}\)

d) Sai.

Diện tích hình chữ nhật \(MNPQ\) là: \(15 \cdot 10 = 150\;\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)

Vậy diện tích hình chữ nhật \(MNPQ\) bằng \(150\;\,{\rm{c}}{{\rm{m}}^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Hình c).     
B. Hình b).      
C. Hình b), hình c). 
D. Hình b), hình d).

Lời giải

Đáp án đúng là: B

\(\frac{6}{3} = \frac{9}{{4,5}}\) nên hình a) và hình b) là hai hình đồng dạng.

\(\frac{5}{9} \ne \frac{{3,3}}{6}\) nên hình a) và hình c) không là hai hình đồng dạng.

\(\frac{9}{9} \ne \frac{{7,5}}{6}\) nên hình a) và hình d) không là hai hình đồng dạng.

Vậy có 1 hình đồng dạng với hình a).

Lời giải

Media VietJack

a) Đúng.

\(\Delta {A_1}{B_1}{C_1}\) là hình đồng dạng phối cảnh của \(\Delta ABC\) với tâm \(O\) và tỉ số \(\frac{{{A_1}{B_1}}}{{AB}} = 2\) nên

\(\frac{{{A_1}{B_1}}}{{AB}} = \frac{{{B_1}{C_1}}}{{BC}} = \frac{{{A_1}{C_1}}}{{AC}} = 2.\)

b) Đúng.

\(\frac{{{A_1}{B_1}}}{{AB}} = \frac{{{B_1}{C_1}}}{{BC}} = \frac{{{A_1}{C_1}}}{{AC}} = 2\) nên \({A_1}{B_1} = 2AB = 16\;\,{\rm{m;}}\;\,{B_1}{C_1} = 2BC = 28\;\,{\rm{m;}}\;\,{A_1}{C_1} = 2AC = 22\;\,{\rm{m}}.\)

Chu vi \(\Delta {A_1}{B_1}{C_1}\) là: \(16 + 28 + 22 = 66\;\,\left( {\rm{m}} \right).\) Vậy chu vi tam giác \({A_1}{B_1}{C_1}\) bằng \(66\;\,{\rm{m}}{\rm{.}}\)

c) Sai.

Vì tam giác \({A_2}{B_2}{C_2}\) là hình đồng dạng phối cảnh với tam giác \({A_1}{B_1}{C_1}\) tâm \(I\) và tỉ số đồng dạng \(\frac{{{A_2}{B_2}}}{{{A_1}{B_1}}} = \frac{1}{2}\) nên \(\frac{{{A_1}{B_1}}}{{{A_2}{B_2}}} = \frac{{{B_1}{C_1}}}{{{B_2}{C_2}}} = \frac{{{A_1}{C_1}}}{{{A_2}{C_2}}} = 2.\) Suy ra: \({B_2}{C_2} = \frac{{{B_1}{C_1}}}{2} = 14\;\,\left( {\rm{m}} \right).\) Vậy \({B_2}{C_2} > 10\;\,{\rm{m}}{\rm{.}}\)

d) Đúng.

Theo c) ta có: \({A_2}{B_2} = \frac{{{A_1}{B_1}}}{2} = 8\;\,\left( {\rm{m}} \right);\;\,{A_2}{C_2} = \frac{{{A_1}{C_1}}}{2} = 11\;\,\left( {\rm{m}} \right).\)

\(\Delta ABC\)\(\Delta {A_2}{B_2}{C_2}\) có: \(AB = {A_2}{B_2};\;\,BC = {B_2}{C_2};\;\,AC = {A_2}{C_2}\) nên \(\Delta ABC = \Delta {A_2}{B_2}{C_2}\;\,\left( {{\rm{c}}{\rm{.c}}{\rm{.c}}} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hình vuông.  
B. Hình tròn.   
C. Hình ngũ giác đều
D. Hình lục giác đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP