Cho biết hai hình chữ nhật \(ABCD\) và \(MNPQ\) (hình vẽ dưới) là hai hình đồng dạng:

Biết rằng chu vi hình chữ nhật \(ABCD\) bằng \(100\;\,{\rm{cm}}{\rm{.}}\) Khi đó:
Cho biết hai hình chữ nhật \(ABCD\) và \(MNPQ\) (hình vẽ dưới) là hai hình đồng dạng:

Biết rằng chu vi hình chữ nhật \(ABCD\) bằng \(100\;\,{\rm{cm}}{\rm{.}}\) Khi đó:
Quảng cáo
Trả lời:
a) Đúng.
Ta có: \(2\left( {AD + DC} \right) = 100\) suy ra \(AD + 30 = 50,\) suy ra \(AD = 20\;\,\left( {{\rm{cm}}} \right).\) Vậy \(AD = 20\;\,{\rm{cm}}{\rm{.}}\)
b) Đúng.
Hình chữ nhật \(ABCD\) đồng dạng với hình chữ nhật \(MNPQ\) theo tỉ số đồng dạng là: \(\frac{{DC}}{{QP}} = \frac{{30}}{{12}} = 2.\)
Vậy hình chữ nhật \(ABCD\) đồng dạng với hình chữ nhật \(MNPQ\) theo tỉ số đồng dạng là 2.
c) Sai.
Ta có: \(\frac{{AD}}{{MQ}} = \frac{{DC}}{{PQ}} = 2,\) nên \(MQ = AD:2 = 20:2 = 10\;\,\left( {{\rm{cm}}} \right).\) Vậy \(MQ = 10\;\,{\rm{cm}}{\rm{.}}\)
d) Sai.
Diện tích hình chữ nhật \(MNPQ\) là: \(15 \cdot 10 = 150\;\,\left( {{\rm{c}}{{\rm{m}}^2}} \right).\)
Vậy diện tích hình chữ nhật \(MNPQ\) bằng \(150\;\,{\rm{c}}{{\rm{m}}^2}.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Có 1 hình có tỉ số vị tự \(k < 1\) là Hình 4.
Lời giải
Đáp án: \(2\)
Vì ba đường thẳng \(EC,\;\,BD,\;\,AF\) cùng đi qua điểm \(O\) và \(\frac{{OB}}{{OD}} = \frac{{OC}}{{OE}} = \frac{{OA}}{{OF}} = 2\) nên tam giác \(ABC\) là hình đồng dạng phối cảnh với tam giác \(DEF\) tâm \(O\) với tỉ số đồng dạng là 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




