Câu hỏi:

19/11/2025 40 Lưu

Cho góc lượng giác \(x \in \left( {\frac{\pi }{2};\pi } \right)\) và có \(\sin x = \frac{1}{3}\). Tính giá trị biểu thức \(A = \cos \left( {\frac{\pi }{4} - x} \right)\) (làm tròn kết quả đến hàng phần chục).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì \(x \in \left( {\frac{\pi }{2};\pi } \right)\) nên \(\cos x < 0\).

Mà \({\cos ^2}x = 1 - {\sin ^2}x = 1 - {\left( {\frac{1}{3}} \right)^2} = \frac{8}{9}\) \( \Rightarrow \cos x =  - \frac{{2\sqrt 2 }}{3}\).

\(A = \cos \left( {\frac{\pi }{4} - x} \right) = \cos \frac{\pi }{4}\cos x + \sin \frac{\pi }{4}\sin x\)\( = \frac{{\sqrt 2 }}{2}.\frac{{ - 2\sqrt 2 }}{3} + \frac{{\sqrt 2 }}{2}.\frac{1}{3} \approx  - 0,4\).

Trả lời: −0,4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Có \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1 \Rightarrow {\cos ^2}\alpha  = 1 - {\left( {\frac{{ - 4}}{5}} \right)^2} = \frac{9}{{25}}\).

Mà \(\pi  < \alpha  < \frac{{3\pi }}{2}\) nên \(\cos \alpha  < 0 \Rightarrow \cos \alpha  =  - \frac{3}{5}\). Chọn A.

Lời giải

\(\cos \left( {\frac{\pi }{4} - x} \right) + 1 = 0\)\( \Leftrightarrow \cos \left( {\frac{\pi }{4} - x} \right) =  - 1\)\( \Leftrightarrow \frac{\pi }{4} - x = \pi  + k2\pi \)\( \Leftrightarrow x = \frac{{ - 3\pi }}{4} + k2\pi \).

Vì nghiệm của phương trình là nghiệm dương nhỏ nhất nên \(k = 1\).

Do đó \(x = \frac{{5\pi }}{4}\). Suy ra \(a = 5;b = 4\). Vậy T = 5 + 4 = 9.

Trả lời: 9.

Câu 3

A. Hàm số \(y = \sin x\) là hàm số tuần hoàn với chu kì \(T = 2\pi \).

B. Hàm số \(y = \sin x\) đồng biến trên khoảng \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

C. Hàm số \(y = \sin x\) có tập giá trị là \(\left[ { - 1;1} \right]\).

D. Hàm số \(y = \sin x\) là hàm số chẵn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{17}}{{25}}\). 

B. \(\frac{{17}}{5}\).       
C. \( - \frac{3}{5}\).         
D. \(\frac{3}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi |k \in \mathbb{Z}} \right\}\). 

B. \(\mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).   

C. \(\mathbb{R}\backslash \left\{ {k\pi |k \in \mathbb{Z}} \right\}\).   
D. \(\mathbb{R}\backslash \left\{ {k2\pi |k \in \mathbb{Z}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP