Câu hỏi:

19/11/2025 43 Lưu

Nghiệm dương nhỏ nhất của phương trình \(\sin \left( {2x + \frac{\pi }{3}} \right) = \sin x\) là \({x_0} = \frac{m}{n}\pi \) với \(\frac{m}{n}\) là phân số tối giản, \(m,n \in \mathbb{N}*\). Tính giá trị của biểu thức \(m + 2n\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\sin \left( {2x + \frac{\pi }{3}} \right) = \sin x\)\( \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{3} = x + k2\pi \\2x + \frac{\pi }{3} = \pi  - x + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{3} + k2\pi \\x = \frac{{2\pi }}{9} + k\frac{{2\pi }}{3}\end{array} \right.,k \in \mathbb{Z}\).

Vì x là nghiệm dương nhỏ nhất nên \(x = \frac{{2\pi }}{9}\) ứng với k = 0.

Suy ra m = 2; n = 9. Do đó \(m + 2n = 20\).

Trả lời: 20.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Do \(\frac{\pi }{2} < \alpha  < \pi \) nên cosα < 0.

Ta có \({\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = \frac{{24}}{{25}}\). Suy ra \(\cos \alpha  =  - \frac{{2\sqrt 6 }}{5}\).

Ta có \(\cos 2\alpha  = 2{\cos ^2}\alpha  - 1 = \frac{{23}}{{25}}\) và \(\sin 2\alpha  = 2\sin \alpha .\cos \alpha  =  - \frac{{4\sqrt 6 }}{{25}}\).

Do đó \(\cot 2\alpha  = \frac{{\cos 2\alpha }}{{\sin 2\alpha }} =  - \frac{{23\sqrt 6 }}{{24}}\).

Khi đó \(a = 23;b = 24\). Vậy \(a + b = 47\).

Trả lời: 47.

Lời giải

Vì \(x \in \left[ {\pi ;2\pi } \right]\) nên \(\sin x < 0\) mà \(\sin x = \frac{1}{5}\) nên phương trình vô nghiệm trên đoạn \(\left[ {\pi ;2\pi } \right]\). Chọn B.

Câu 3

a) Khi \(x = 0\) thì \(A = 1\).

Đúng
Sai

b) \(A = 1 + \sin 2x\).

Đúng
Sai

c) \(A \in \left[ {0;2} \right]\).

Đúng
Sai
d) Nếu \(\cos 2x =  - 1\) thì \[A =  - 2\].
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(S = \left\{ {k2\pi ,k \in \mathbb{Z}} \right\}\).

B. \(S = \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).  

C. \(S = \left\{ { - \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} \right\}\).
D. \(S = \left\{ { - \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(M = \frac{1}{{\cos x}}\). 

B. \(M = \frac{{\cos 3x}}{{\sin x.\cos x}}\).  
C. \(M = \frac{1}{{\sin x}}\). 
D. \(M = 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP