Xét hai đại lượng \(x,y\) phụ thuộc vào nhau theo hệ thức dưới đây. Trường hợp nào \(y\) không là hàm số của \(x\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
+ \({x^2} - {y^2} = 0\)không phải là hàm số vì hàm số biểu thị một giá trị của \(x\) tương ứng với duy nhất một giá trị của \(y\) mà với \(x = 1 \Rightarrow {1^2} - {y^2} = 0 \Leftrightarrow {y^2} = 1 \Rightarrow y = \pm 1\) (có 2 giá trị).
+ \(y = x - 3\) là hàm số vì hàm số biểu thị một giá trị của \(x\) tương ứng với duy nhất một giá trị của \(y\) .
+ \(y = {x^2} - 2x\) là hàm số vì hàm số biểu thị một giá trị của \(x\) tương ứng với duy nhất một giá trị của \(y\).
+ \(y = 2x\) là hàm số vì hàm số biểu thị một giá trị của \(x\) tương ứng với duy nhất một giá trị của \(y\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
![Cho tam giác \[ABC\] đều có cạnh \(a\), điểm \ (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/11/39-1763537040.png)
a) Do \(M\) là trung điểm \(BC\) nên \(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\) và \(AM\) là trung tuyến của tam giác \[ABC\].
Hơn nữa, \(G\) là trọng tâm của tam giác \[ABC\] nên \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \).
Do đó, \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} = \frac{2}{3} \cdot \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).
b) Ta có: \(\overrightarrow {AG} .\overrightarrow {AB} = \left( {\frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right).\overrightarrow {AB} = \frac{1}{3}{\overrightarrow {AB} ^2} + \frac{1}{3}\overrightarrow {AC} .\overrightarrow {AB} = \frac{1}{3}.{a^2} + \frac{1}{3}.a.a.{\rm{cos}}60^\circ \)
\( = \frac{1}{2}{a^2}\).
Câu 2
Lời giải
Hướng dẫn giải
Đáp án đúng là: A

Ta có \(\widehat {CAD} = 63^\circ \Rightarrow \widehat {BAD} = 117^\circ \Rightarrow \widehat {ADB} = 180^\circ - \left( {117^\circ + 48^\circ } \right) = 15^\circ \)
Áp dụng định lý sin trong tam giác \(ABD\) ta có:
\(\frac{{AB}}{{\sin \widehat {ADB}}} = \frac{{BD}}{{\sin \widehat {BAD}}} \Rightarrow BD = \frac{{AB.\sin \widehat {BAD}}}{{\sin \widehat {ADB}}}\)
Tam giác \(BCD\) vuông tại \(C\) nên có: \(\sin \widehat {CBD} = \frac{{CD}}{{BD}} \Rightarrow CD = BD.\sin \widehat {CBD}\)
Vậy \[CD = \frac{{AB.\sin \widehat {BAD}.\sin \widehat {CBD}}}{{\sin \widehat {ADB}}} = \frac{{24.\sin 117^\circ .sin48^\circ }}{{\sin 15^\circ }} = 61,4m\].
Câu 3
Cho bảng phân bố tần số sau
|
Giá trị |
X1 |
X2 |
X3 |
X4 |
X5 |
|
Tần số |
12 |
5 |
n2 |
16 |
6n – 5 |
Với điều kiện nào của số tự nhiên n thì bảng số liệu có mốt là \({X_3}\)?
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.