Câu hỏi:

19/11/2025 7 Lưu

Cho tam giác \(ABC\) đều cạnh bằng \(1\), trọng tâm \(G\). Độ dài vectơ \(\overrightarrow {AG} \) bằng:

A. \(\frac{{\sqrt 3 }}{2}\) ; 
B. \(\frac{{\sqrt 3 }}{3}\);                                 
C. \(\frac{{\sqrt 3 }}{4}\);                                 
D. \(\frac{{\sqrt 3 }}{6}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: B

Gọi \(M\) là trung điểm của \(BC\). Vì tam giác \(ABC\) đều nên \(AM \bot BC\)

Ta có \(A{M^2} = A{B^2} - B{M^2} = {1^2} - {\left( {\frac{1}{2}} \right)^2} = \frac{3}{4} \Rightarrow AM = \frac{{\sqrt 3 }}{2}\)

Ta có: \(\left| {\overrightarrow {AG} } \right| = AG = \frac{2}{3}AM = \frac{2}{3} \cdot \frac{{\sqrt 3 }}{2} = \frac{{\sqrt 3 }}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cho tam giác \[ABC\] đều có cạnh \(a\), điểm \ (ảnh 1)

a) Do \(M\) là trung điểm \(BC\) nên \(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\)\(AM\) là trung tuyến của tam giác \[ABC\].  

Hơn nữa, \(G\) là trọng tâm của tam giác \[ABC\] nên \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} \).  

Do đó, \(\overrightarrow {AG} = \frac{2}{3}\overrightarrow {AM} = \frac{2}{3} \cdot \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right) = \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} \).

b) Ta có: \(\overrightarrow {AG} .\overrightarrow {AB} = \left( {\frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AC} } \right).\overrightarrow {AB} = \frac{1}{3}{\overrightarrow {AB} ^2} + \frac{1}{3}\overrightarrow {AC} .\overrightarrow {AB} = \frac{1}{3}.{a^2} + \frac{1}{3}.a.a.{\rm{cos}}60^\circ \)

\( = \frac{1}{2}{a^2}\).

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Hướng dẫn giải  Đáp án đúng là: D (ảnh 1)

Ta có \(\widehat {CAD} = 63^\circ \Rightarrow \widehat {BAD} = 117^\circ \Rightarrow \widehat {ADB} = 180^\circ - \left( {117^\circ + 48^\circ } \right) = 15^\circ \)

Áp dụng định lý sin trong tam giác \(ABD\) ta có:

\(\frac{{AB}}{{\sin \widehat {ADB}}} = \frac{{BD}}{{\sin \widehat {BAD}}} \Rightarrow BD = \frac{{AB.\sin \widehat {BAD}}}{{\sin \widehat {ADB}}}\)

Tam giác \(BCD\) vuông tại \(C\) nên có: \(\sin \widehat {CBD} = \frac{{CD}}{{BD}} \Rightarrow CD = BD.\sin \widehat {CBD}\)

Vậy \[CD = \frac{{AB.\sin \widehat {BAD}.\sin \widehat {CBD}}}{{\sin \widehat {ADB}}} = \frac{{24.\sin 117^\circ .sin48^\circ }}{{\sin 15^\circ }} = 61,4m\].

Câu 3

A. \(n > 4\);           
B. \(n < - 4\);                             
C. \(n > 5\);                               
D. \(n < 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({a^2} = {b^2} + {c^2} - 2bc.\cos A\);      
B. \(b = \frac{{c.\sin B}}{{\sin C}}\);
C. \(S = \sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \) ;              
D. \(S = ab.\sin C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = 2a\sqrt 3 \);                                               
B. \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = a\sqrt 3 \)
C. \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = 3a\);                                                           
D. \(\left| {\overrightarrow {AB} + \overrightarrow {AD} } \right| = 3a\sqrt 3 \);

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP